

Project Report

Introduction and Background 4

Journal Selection 18

Changes from original requirements 20

Application Design 22

Developers Manual 25

Testing 25

Documentation 26

Project Software Tools 27

Estimates and Planning 29

Team Approach 30

Development Process and Lessons Learned Reflection 30

Risks 32

Appendix A - Requirements 34

Appendix B - UI Wireframes 58

Appendix C - ERM 62

Appendix D - Sequence Diagram 63

Appendix E - Sprint Estimations 64

Appendix F - API Documentation 67

Appendix G - Tests and Code Coverage 91

Appendix H - Application Documentation 94

Appendix I - Developers Manual 96

Page 2

Project Report

Introduction and Background

Abstract

The European Union (EU) aims to become the first climate-neutral continent by 2050 as

outlined in their “Green Deal” initiative. As part of that effort, the EU has a goal of making

climate-change data accessible for its constituents. While the EU has successfully aggregated

large amounts of data through Eurostat, the European Environment Agency, Copernicus, and

Europa.eu, the data is structured in different schemas and formats. Prior to our solution

described in this paper, no platform existed which harmonized all of these disparate data

sources into a holistic view that would allow a user to quickly understand how the EU is tracking

towards their Green Deal goals. The “Green Deal Dashboard” addresses this need by

aggregating seven unique data types into one application that reveals quick insights on

progress towards the EU’s air quality goals. The application has been designed to be extensible

to other data sources in the future to serve other Green Deal initiatives such as water quality

and improvements in food production.

Keywords: EU Green Deal, Climate data, Visualizations, Air quality

Introduction

The European Union (EU) aims to become the first climate-neutral continent by 2050. As

part of this initiative, the European Commission stated that “it will be important to ensure that

across the EU, investors, insurers, businesses, cities, and citizens can access data and to

develop instruments to integrate climate change into their risk management practices” . 1

Unfortunately, the EU is not yet meeting its goal of data accessibility for its constituents.

54% of EU citizens do not feel well-informed about EU air quality problems in their country

(Directorate-General for Environment, 2019). Many business leaders have expressed similar

1 European Commission, “European Green Deal Communication”, 2019, p.5 ,
https://ec.europa.eu/info/sites/info/files/european-green-deal-communication_en.pdf

Page 3

https://ec.europa.eu/info/sites/info/files/european-green-deal-communication_en.pdf

Project Report

sentiments expressing a lack of climate data understanding. “As long as we have no

measurement data to measure emissions rates, we can’t do anything,” stated Heinrich

Bovesmann, Managing Director at the Institute of Environmental Physics in Bremen in regards

to access to air pollution data (Kean, 2019).

The statements above appear to allude to a lack of data, but the root issue seems to be

a lack of accessible data. While there is significant climate data publicly available from Eurostat,

the European Environment Agency, Copernicus, and Europa.eu, it is not available in a

user-friendly format. Data are composed of formats that cater to technical users. For example,

accessing air quality data may require writing SPARQL queries through the EU Open Data

Portal, processing NetCDF data from satellite data, or reading in SHP files for regional

boundaries based on the Nomenclature of Territorial Units for Statistics system which was

developed by the European Union to group regional areas based on similar population sizes.

We created a platform that simplifies the complexity of understanding and acting upon

scientific climate data. The application accumulates diverse types of climate data from a wide

range of sources, and funnels the critical insights from the data into a streamlined, easily

understood, actionable, and customizable front-end interface. Although the source data are

aimed at scientific users, the platform caters to a non-technical audience and, more specifically,

is directed at commissioners and leadership of the European Green Deal. The front-end

organizes data into a series of dashboards, which include visualizations pre-filtered with data

based on a user’s profile and then optionally refined by the user. Visualizations include

interactive maps, charts, and tables. In addition to current and historical data, the platform

presents comparisons to Green Deal target values for data points that have published

attainment requirements.

Page 4

Project Report

Figure 1. Application Screenshot: Bubble sizes represent population size while bubble colors denote target

achievement for all EU measurement stations. Hoverable pop ups provide details for underlying bubbles.

Additionally, all data supported by the platform is available on a country and regional

level as defined by the EU NUTS classification (Nomenclature of Territorial Units for Statistics).

The application’s novelty is in its ability to consolidate a flexible number of external data sources

and enable users to navigate through a uniquely tailored series of interactive data visualizations.

The “Green Deal Report” application described in this paper focuses on air pollution, but the

application was built to accommodate additional types of climate-related data.

Page 5

Project Report

Figure 2. Application Screenshot: Home page provides a quick

snapshot of key pollutants compared to targets for the past week.

Background

Many software developers and climate experts have created solutions that bring data

together from various sources and integrate them in a user-friendly manner. Adler and Hostetler

(2015) created the USGS National Climate Change Viewer which can generate time series plots

and maps of temperature data (Figure 3). While their visualizations are user-friendly, the views

lack granularity. For example, users can only view summarized data over 20 year periods. In

addition, it only plots temperature data and does not provide data on underlying pollutants.

Page 6

Project Report

Figure 3. USGS National Climate Change Viewer displaying mean temperature data

Zeng, Chang, and Fang (2019) published a methodology that aligned with many of our

philosophies to provide an accessible platform for users to view air quality data. The solution

presented an ETL framework that extracts particulate matter data from the Taiwanese

Environmental Administration into an intuitive map and tabular data. While this approach

provides a useful baseline, it does not provide the end-user context on how those air pollution

levels correlate to climate change goals. Another key differentiator for our solution is its ability to

summarize pollution data by regional boundaries. We believed this was critical for EU

commissioners to be able to make actionable decisions around adjustments that align with their

long-term climate change goals.

An approach by Tominski, Donges, and Nocke (2011) outlined a visualization for climate

change data. While their proposed solution leverages satellite data, their solution, like the USGS

National Climate Change Viewer, does not provide information on the underlying pollutants that

correlate with climate change. Although the visualizations (Figure 4) in this application serve as

Page 7

Project Report

an inspiration for our effort, the level of data presented is more technical than is intended for our

non-scientific target audience.

Figure 4. Coordinated views as provided by the system outlined in “Information Visualization in Climate Research”.

In addition to the academic journal papers cited above, several current and publicly

available software tools provide visualizations of global atmospheric composition data, including

the Copernicus website, the World's Air Pollution: Real-time Air Quality Index, the Panoply

Viewer by NASA, and the Quantum Geographic Information System (QGIS). While all of these

tools have user-friendly interfaces that allow non-technical users to view air quality data, they do

not meet the core need of quickly viewing summarized air quality levels at a regional level and

comparing them to targets.

European Commissioners need the ability to view data on the following pollutants:

ozone, nitrous dioxide, sulfur dioxide, CO, PM10 aerosol, PM2.5 aerosol, wildfire Particulate

Page 8

Project Report

Matter (PM) and dust. This information plays a critical role in allowing commissioners to find the

root cause of air quality changes. The Copernicus website has data for individual pollutants, but

it doesn't provide a user-friendly air quality index. The World's Air Pollution: Real-time Air Quality

Index website (https://waqi.info), on the other hand, provides a user-friendly air quality index of

various points on a world map, but it doesn't break down the individual pollutants.

The Copernicus website and Panoply Viewer can display all necessary pollutant data

(Figure 5). However, both tools only render country or continent boundaries and cannot provide

summary statistics based on regional boundaries.

Figure 5. The Panoply viewer rendering global ozone levels.

QGIS can provide summary statistics as defined by a regional boundary but requires the

end-user to perform spatial joins which would require installation of specialized software like

QGIS or ArcGIS, importing raw SHP files and pollution data, defining the vector data to be

Page 9

Project Report

summarized, defining the layers to be joined, and finally grouping the data (QGIS Tutorials,

2020). A spatial join is a geographical information system operation that joins attributes from

one feature to another based on the spatial relationship between them—although reasonable for

a scientist, expecting the target audience of our platform to perform these actions is unrealistic.

Additionally, the task of accumulating this data limits any user, expert or not, from performing

any quick 'on-the-fly' analysis. In our testing, it took several minutes to download the original

raw data before any consolidation of data sources. Although the process may yield a high value

for scientific analysis, our objective is to provide a higher-level of summarized results using

interactive visualizations.

In a study of best dashboard design practices, researchers found that dashboard users

showed "no interest in, for example, most metadata items, schema names or transformation

constraints, which are found between the data source layer and business layer" (Presthus,

Canales, 2015). The authors discovered that users valued having the ability to drill down within

reports, but found that "it is not necessary to go all the way down to the data lineage/data

source layer. It is sufficient to go down to the business layer". We believed that the EU

commissioners would have a similar preference since there's a wide range of scope and

granularity under each commissioner's purview. They also need to be able gain insights quickly,

so exposing any underlying data schema would likely lead to a less than ideal user experience.

With that in mind, we determined that standard business intelligence tools on the market would

not be sufficient for providing different levels of drill-down capabilities for the various

commissioner personas. While Tableau, Power BI, Qlik, Looker, and Data Studio all can support

drill-downs, they do not support configuration of drill-down depth based on a predefined user

preference.

Some critical detractors for dashboards included manual data entry, the inability to drill

up or down, interfaces that were difficult to use, and slow speeds (Bugwandeen, Ungerer,

2019). Our solution addresses each of these issues by automating the collection of data from

each original data source, providing drill-down capabilities, designing the interface with the user

in mind, and storing the data in a format optimized for fast access.

After reviewing solutions currently available in the market as well as those outlined in

academic journals, there is no user-friendly interactive climate data portal, which enables

Page 10

Project Report

comparison to targets, let alone one that supports the EU Green Deal. We hope that this

dashboard serves as a functional tool that can be extended to meet future needs for a set of

climate change data.

Our solution provides simple visualisations immediately after the user logs in. For

example, on the dashboard homepage, the user can view air quality data over the past week, a

regional heatmap by pollution channel of EU countries and the year-over-year change by

pollutant and country (Figure 6).

Figure 6. The Green Deal Dashboard homepage

If the user would like to drill down further, they can click on pages like the Trends page to

change the specified time range and region to see how air quality has changed over time. This

view proves to be especially relevant during the time this paper was written since

shelter-in-place orders have been in effect across the EU due to COVID-19. With only a few

clicks a Green Deal dashboard user can see that most air quality pollutants have decreased

Page 11

Project Report

year-over-year during the month of April (Figure 7).

Figure 7. Air quality trends view by as measured by pollutant during the month of April

Green Deal dashboard users can also gain more granular insights on air quality via map

views. For example, on the Goal Tracking page, users can view readings from individual

pollution reading stations across the EU and see by simple color coded bubbles whether that a

particular area’s readings are above the pollutant goals for that year or below. The size of the

bubble also indicates the population of that region so the user can see how much impact the air

quality is having on citizens. During the month of April, 2020, forest fires consumed 6,000

hectares of Biebrza National Park. The impact of those fires can be clearly seen in the PM2.5

Page 12

Project Report

readings of the trends map during that time (Figure 8).

Figure 8. The Goal Tracking view shows air quality readings vs the EU’s target pollution levels. High levels

of PM2.5 can be seen in Poland where forest fires were active in April, 2020.

While gaining insights on current air quality levels is useful for tracking progress,

commissioners and citizens also need to understand the leading causes of emissions. The

Sectors report of the dashboard gives insights on which industries are emitting each major

pollutant (Figure 9).

Page 13

Project Report

Figure 9. The Sectors report shows which industries are emitting each pollutant type in aggregate and in trended

views. Users can filter these views by country and year.

 While the Green Deal dashboard has already provided useful insights on the impact of

shelter-in-place orders and recent forest fires on air quality, it’s value will increase as more

users leverage it to answer questions they may have around the impacts of policy changes or

their own personal actions.

 The next progression of this dashboard would be to extend it to add additional data

sources which pertain to other initiatives of the Green Deal such as water quality and clean food

production. In addition, this dashboard could serve as a helpful tool for European citizens to feel

more connected to their impact on climate change. In order to support a large number of users,

further infrastructure development work would be necessary to increase the speed of the

platform such as: database optimisations, setting up a CDN, implementing a headless front-end,

etc. Once this work is done, this platform will be able to act as a robust tool for EU

commissioners and citizens to monitor their progress towards their goal to become the first

climate-neutral continent by 2050.

References

Page 14

Project Report

Alder, J.R. Hostetler, S.W. (2015) Web based visualization of large climate data sets. Elsevier

Environmental Modeling And Software - 68

Bugwandeen, K. Ungerer, M. (2019) Exploring the design of performance dashboards in relation

to achieving organisational strategic goals - 163

Copernicus (2020). Air Quality in Europe. Retrieved from:

http://macc-raq-op.meteo.fr/index.php?category=ensemble&subensemble=hourly_ensemble&d

ate=LAST&calculation-model=ENSEMBLE&species=o3&level=SFC&offset=000

Directorate-General for Environment. (2019). Eurobarometer - Attitudes of Europeans towards

Air Quality. Retrieved from:

https://ec.europa.eu/commfrontoffice/publicopinion/index.cfm/Survey/getSurveyDetail/ins

truments/SPECIAL/surveyKy/2239

The European Commission. (2019). The European Green Deal. Retrieved from:

https://ec.europa.eu/info/sites/info/files/european-green-deal-communication_en.pdf

Eurostat. (2019). NUTS - Nomenclature Of Territorial Units For Statistics. Retrieved from:

https://ec.europa.eu/eurostat/web/nuts/background

Kean, Dave. (2019). Satellite Data Offers New Hope For Taming Oil’s Methane Emissions.

Retrieved from:

https://www.euractiv.com/section/energy/news/satellite-data-offers-new-hope-for-taming-

oils-methane-emissions/

Presthus, W, Canales, C. (2015) Business intelligence dashboard design. A case study of a

large logistics company. NOKOBIT Vol 23 - 12

My Climate. (2020). What is climate neutrality? Retrieved from My Climate:

https://www.myclimate.org/information/faq/faq-detail/detail/News/what-is-

climate-neutrality/

QGIS Tutorials (2020). Performing Spatial Joins (QGIS3). Retrieved from:

https://www.qgistutorials.com/en/docs/3/performing_spatial_joins.html

Tominski, Christian, Donges, Jonathan F, Nocke, Thomas (2011) Information Visualization in

Climate Research. 2011 15th International Conference on Information Visualisation

London, UK

Page 15

http://macc-raq-op.meteo.fr/index.php?category=ensemble&subensemble=hourly_ensemble&date=LAST&calculation-model=ENSEMBLE&species=o3&level=SFC&offset=000
http://macc-raq-op.meteo.fr/index.php?category=ensemble&subensemble=hourly_ensemble&date=LAST&calculation-model=ENSEMBLE&species=o3&level=SFC&offset=000
https://ec.europa.eu/commfrontoffice/publicopinion/index.cfm/Survey/getSurveyDetail/instruments/SPECIAL/surveyKy/2239
https://ec.europa.eu/commfrontoffice/publicopinion/index.cfm/Survey/getSurveyDetail/instruments/SPECIAL/surveyKy/2239
https://ec.europa.eu/eurostat/web/nuts/background
https://www.euractiv.com/section/energy/news/satellite-data-offers-new-hope-for-taming-oils-methane-emissions/
https://www.euractiv.com/section/energy/news/satellite-data-offers-new-hope-for-taming-oils-methane-emissions/

Project Report

Zeng, Yu-Ren, Chang, Yue Shan, Fang, You Hao (2019) Data Visualization for Air Quality

Analysis on Bigdata Platform. 2019 International Conference on System Science and

Engineering (ICSSE) Ho Chi Minh City, Vietnam

Page 16

Project Report

Journal Selection

Identifying a viable journal for the project is imperative to overarching success and the

respective audience that the target application can reach. Journal selection was made based on
three overarching factors:

(1) Geographical proximity to the target user demographic,
(2) Overall topic synergy derived from the research and data driving the product solution,

and
(3) Pricing and submission requirements for eligibility

Journal of Environmental Planning

We chose the Journal of Environmental Planning and Management as the target
publication for the effort described in this document. This journal is backed by the broader
organization, Taylor and Francis Online. The publication has a global reach, with contributions
from leading authors and is published annually. Topics covered in the journal align well with the
product objectives of the development project in focus. The international scope of the
publication may help to inspire other geographies across the globe to learn from and emulate a
similar endeavor to be net emission neutral.

The topic objective aims to accumulate prioritized data from a diverse set of resources

and produce a unified, simple, and measurable dashboard of data output for commissioners.
This objective aligns with the aim and scope of the Journal of Environmental Planning and
Management. Synergies exist between the product scope and journal with a mutual emphasis
on promoting an enhanced perspective on environmental issues, developing knowledge on the
causes of environmental change, and implementing technology and innovation as a solution.
We employed a particular focus on the journal’s innovative management methods category.

Lastly, pricing and submission requirements were analyzed to verify compatibility and

feasibility. The Journal of Environmental Planning and Management supports format-free
submissions, with open scholarly and reference styles accepted. The verification process also
proved to be reasonable, with eight total steps to publications:

Page 17

Project Report

(1) Identify specific Taylor & Francis Journal (Journal of Environmental Planning and
Management)

(2) Write a draft of the article
(3) Verify submission requirements (clarity, structure, length, format, references,

permissions, and sharing policies)
(4) Assessment by the journal editor
(5) Peer review
(6) Journal acceptance decision
(7) Approval or denial
(8) Published paper

There are no submission or publication fees required for the Journal of Environmental

Planning and Management.

Given the journals subject matter, credibility, global publication scope, and lack of

publishing charge, The Journal of Environmental Planning and Management meet the project’s
objectives as a publication target.

EU Datathon 2020
An alternative approach towards publication is to enter the application into a contest. The EU is
hosting the EU Datathon 2020 which encourages entrants to submit applications and ideas
aimed at address one of 4 areas:

1. A European Green Deal
2. An Economy that Works for Everyone
3. A New Push for European Democracy
4. A Europe Fit for the Digital Age

The contest requires that the application make direct use of the data sources that are already
being used in the application. As this platform directly addresses the Green Deal, we have
entered the application into this contest in the “Green Deal” category.

Page 18

Project Report

Changes from original requirements

Data Sources
Initially we were targeting a single data set from each of 3 data providers as mentioned in the
M1 report which were Copernicus, EEA and Eurostat. We were planning to get RDF-data stored
in the EEA (European Environment Agency) data source, REST-based data stored in the
EuroStat data source and CSV-based data stored in the Copernicus data source. As we made
more progress in the project, we realised the importance of additional datasets from each data
provider in order to add more value to the dashboard. Currently we are pulling following data
sets:

● Copernicus:
○ Satellite images of air quality data via REST requests with NetCDF file payloads

● EEA:
○ Observation station location via REST requests with CSV payload and Air quality

sensor data from observation stations via REST requests with CSV payloads
○ Emissions by sector via SPARQL requests with RDF payloads
○ Air quality goals added manually for entire Europe

● Eurostat:
○ Region boundary polygons via REST requests with a GeoPandas shape file

payloads
○ Population information via REST requests with CSV payloads

Plots and Dashboard
We added more plots and dashboards than were initially proposed in the original requirement
section. Changes in plots and dashboards are:

● We added a bubble map in the Goal Tracking page which shows progress towards
attainment goals by nuts 2 region. Here the bubble size relates to population in that
region which shows how much population is under attainment or above attainment
goals. This plot shows how this platform is able to merge data from 2 different data
sources (goals from EEA and population from Eurostat) to show something meaningful
in the dashboard.

● Sectors dashboard was added which shows emissions based on 9 major sectors. Initially
it shows complete europe data but a region filter allows the user to see plots for a
particular region. Below is the list of plots added in this dashboard:

Page 19

Project Report

○ Emission percentage based on sectors in 2017: This shows emissions
percentages for all 9 sectors for 6 pollutants which are PM2.5, PM10, NOx, CO,
SOx and NH3.

○ Yearly emissions of main pollutant: This shows the overall emission trends of 6
pollutants which are PM2.5, PM10, NOx, CO, SOx and NH3 from 1990 till 2017.

○ It includes 6 more plots which shows how the total emission trend shown in
above plot is distributed among sectors for PM2.5, PM10, NOx, CO, SOx and
NH3 from 1990 till 2017.

Technical Stack

● Simplified data flow
Initially we were thinking of pulling data from various data sources and putting it to a
temporary data store and then pulling it from there and putting it into our database. While
there can be benefits to temporary data stores, we decided to simplify the process and
started pulling data from data sources and putting it directly to the database.

Visualizations

● Removed Angular
We started with bootstrap and we did not feel the need to move to angular. We are able
to show UI features we required with bootstrap.

● Added Bokeh
Bokeh is an interactive visualization library for modern web browsers. It is helpful in
making interactive plots, dashboards and data applications. Charting elements can
easily be plotted and can easily be surfaced without writing a lot of UI code.

External API
An external API is an API designed for access by a larger population as well as web developers.
Because of the benefits below we decided to create external API for our application:

● This provides a way to visualize the data we are getting from the server side.
● With API design we have decoupled logic from representation.
● Using JSON provides a more familiar interface for developers.

AWS
We have used AWS EC2 to process and load data as a part of the ETL pipeline instead of AWS
ECS Fargate. This was done because the incremental data load process was simple enough to
run on a very small or free tier instance. One of the data sources required us to use AWS
Auto-Scaling with AWS EC2 spot fleet instances to scale the data load as well.

Page 20

Project Report

We did end up using AWS ECS Fargate to host the web server
(https://www.greendealdashboard.com). This helped our architecture because our webserver is
built using a docker image. To deploy the docker image AWS ECS Fargate seemed to be an
ideal candidate. This webserver is load balanced and can be scaled up very easily by changing
options within AWS console.

To host the website we have used AWS Route53 where we registered a domain name:
greendealdashboard.com and created a route to the Load balanced web server endpoint.

Application Design

Logical Software Design
This project requires an application which brings data from different sources together and
provides visualizations to the end-user for analyzing EU air pollution data. The architecture
supporting this application is divided into 3 layers:

1. Model/Data
This layer is responsible for fetching and storing data from multiple external sources at a
scheduled interval based on the data refresh interval of each particular external source.
The Model layer is designed so that data values from various sources are tied together
using foregin key relationships between the data. A diagram of the data’s entity
relationship model is included in the appendix (Appendix C - ERM).

Backend Database
Using settings in the Django framework, the backend database source can be
configured to run on a publicly hosted service or in a private subnet. The initial prototype
was developed using a local Docker instance with Postgres as well as using AWS RDS
also with Postgres. This database serves as the only datastore for this project.

Data Transformation
As data is loaded, it is transformed according to the specifics of the application including,
but not limited to: scaling, setting/changing data types, correcting errors, and adding
calculated fields. The processing time spent at this point is meant to alleviate the burden
of data processing for subsequent layers in the architecture. For example, 78 EEA sector
codes collected through the RDF data source are categorized into 9 major sector groups
which are displayed in the application. Other data transformations include the averaging

Page 21

https://www.greendealdashboard.com/

Project Report

of hourly satellite images over a day, as well as, removing ground observation station
pollution measurements that are labeled as inaccurate.

Update Interval Scheduling and Storage
Each unique data source is updated at intervals that align with the data source’s update
schedule. All the incremental data updates can be handled within a single AWS EC2
instance except one datasource. To get observation station reading data, we needed to
scale the data loading process. We have used AWS EC2 Spot fleet with AWS
Autoscaling to load data from this datasource. The number of concurrent instances
which will be loading the data can be controlled within the Autoscaling options. This has
been kept as a fixed number of instances and can be configured to scale up or down
using the depth of AWS SQS from which the worker nodes are listening to the messages
and processing them. Configuring the autoscale up and down is out of scope of this
project but can be easily achieved with the current architecture.

2. Controller

This layer is responsible for retrieving data from the various sources stored in the
backend database and consolidating them into data structures which can be used by the
front end for visualization. The Controller hides the complexity of accessing the wide
variety of data stored in various tables in the application database. The Controller allows
the front-end to focus on presenting meaningful visualizations based on the application’s
data avoiding the complexity of navigating the specifics of the database.

REST API
The controller exposes backend data through a REST API. This API is used by the
front-end of the application but can also be accessed directly through HTTP requests.

3. View
The View layer is the front end UI of the application. This layer is responsible for
presenting data to the user, authenticating access to the application, and administration
tasks performed by the application administrator.

End-User Visualizations
The View layer allows the user to navigate the site and filter data which is presented in
multiple charts and visualizations required to do EU air pollution analysis. The appendix
includes front-end UI wireframe examples that are presented by the View layer.

Authentication
Users will not self-register for access to the services of the application. Instead, an
application administrator will manually create new user accounts. After an account is

Page 22

Project Report

established, a user can access the application using an assigned user id and password.

Application Administration
The application design includes the ability for each user to be assigned to a ‘persona’
which will dictate the default data that is presented to the user. Each user is also
assigned a default region for which data is pre-filtered. The application supports a
process that allows an application administrator to create and change ‘personas’ and
assign ‘personas’ and default regions to users.

Superadmin
The application supports a ‘superadmin’ user role that will be used to navigate the
database structure. This role is primarily for developers of the application.

Technical Architecture Design
The technical architecture diagram below summarizes the applications and services used to
deliver the application services:

Figure 1. Technical Stack

Technical component Service/Platform

Language Python (Customer request)

Page 23

Project Report

Cloud Provider AWS

Database AWS RDS (Postgres)

DNS Hosting Route 53

Data ingestion AWS EC2, AWS Autoscaling

Raw Storage AWS S3

Web server Python Django, AWS ECS Fargate (Load
balanced)

Front-end Javascript, jQuery, Bokeh, Bootstrap

Desktop Browser Support Chrome 80+

Developers Manual

A developers manual is included in Appendix I - Developers Manual that explains how to set up
the application in your local environment.

Testing

The application uses the Django TestCase library to run unit tests and the Django coverage
plugin to check our test coverage. Instructions on how to run the tests and generate the test
coverage report can be found in Appendix G.

Page 24

Project Report

Figure 2. Test Coverage

Documentation

We used the Sphinx document generator to generate documentation. The document is in the
code repository under eugreendeal/docs/index.html. Instructions on how to generate the
documents can be found in Appendix H.

Page 25

Project Report

Figure 3. Document Example

Project Software Tools

Our team used a variety of software products and everything we needed was able to be done
with the free versions of the software.

Communication
We used Slack as a primary method of communicating and sharing information on a daily basis.
For team meetings we used Zoom because it supports audio, video, and screen sharing.

Document Creation
We used Google Docs to create documents and Google Slides for PowerPoint-style
presentations. These were used because they allowed all team members to collaborate on the
same documents at the same time, and see modifications made by others in real-time.
Documentation for the source code is embedded in the python modules and can be exported as
a navigable html library using a module like MkDocs.

Page 26

Project Report

Date Coordination
For team meetings with and without the customer, we used Google calendar to keep everyone
aware of the details.

Project Management
For managing the project, we used Trello. It's a lightweight way to create, assign, and track our
tasks. We considered using Jira instead of Trello but found that Jira provided more functionality
than we needed.

Mockups and Diagrams
We used Invision for basic wireframes and Astah for UML and sequence diagrams.

Software Source Control and CI/CD
We used Bitbucket for our code repository. It not only provides a repository but also CI/CD
pipeline as a service.

Page 27

Project Report

Estimates and Planning

The project spans a time period from March 1 through May 13.

Efforts are planned as depicted in the timeline below.

Figure 4. Timeline

Sprints
Three 2-week sprints are set up to handle 3 basic objectives of technical setup, integration of
data and refining the deliverable and including stretch goals.

Final Cleanup
A final period of time is reserved to finalize documentation, prepare the publication and work on
the final presentation.

Effort Estimation
The appendix includes a detailed listing of items to address before the project is complete
(Appendix D - Sprint Estimations).

Effort times are defined by the number of days a person will need to work on this. Because this

Page 28

Project Report

is a class-project and we are not working normal work-days, a ‘day’ is whatever a person can do
in a day along-side their usual professional workload. These days may not be sequential and
may be spread over the time of the sprint. Efforts exclude project meeting/administrative time
and time spent learning new technologies. This also excludes time spent in class and time
preparing milestone documentation and presentations.

Team Approach

The team worked incredibly well together. Despite the fact that the customer (Dave

Dowey) resides in Europe, the team had no difficulty interacting with him. Dave has been very
generous with his time and joined the team on multiple Zoom meetings and also interacted via
email frequently. The biggest limitation was available time for meetings, given the only available
slots for all members were on the weekends.

As far as decisions go, the team discussed issues collectively and made all decisions in
a collaborative fashion. All team members checked into Trello and Slack regularly and
participated. The team loosely followed Agile as the primary development methodology. Initially,
a Kanban approach was followed, but later switched to Scrum using sprints when coding
commenced. Although the team planned the project in 2-week epics, weekly sprint targets were
established to address current epics.

Development Process and Lessons Learned
Reflection

The following section reviews the development process and the team’s experiences throughout
the process.

Requirements
Gathering a complete and clear list of requirements proved much more challenging than any
team members expected. The customer presented us with a concept and the flexibility to
implement the concept as we saw fit. Lacking a firm grasp of the landscape, the ultimate end

Page 29

Project Report

user and subject matter, we struggled to take advantage of the lack of limitations given to us.
We found it difficult to define a set of requirements that described a useful product satisfying the
broad vision. The effort consumed a great deal of time, motivation, morale and energy from the
team. Later, we overcame this slow start as we became more familiar with the environment and
the end vision became clear.

We set a key scoping element by limiting the application to being a prototype that hosts air
pollution data only. The EU Green Deal includes targets for pollution, food, energy and
transportation, but including all of these would have been impossible in our time frame. This
simple decision helped to make the project a success.

Planning
Spending more time refining requirements put pressure on our planning timeline. Even with a
list of requirements, we still lacked detailed understanding of what the data would look like, how
to get it, the quality of the data and the storage requirements for the data. We also did not
understand the fields we would use to link data sources together. This prevented us from
preparing a detailed database design and later caused issues as the abundance of data we
collected slowed data retrieval. We initially chose to keep all the data we found since we
weren’t sure which data would ultimately be necessary. Later, we were forced to curtail the data
and adjust the collection process to focus only on the data we needed. This caused database
and software changes. Fortunately, our high level MVC application design approach worked
well and did not need redesign.

Spending more time on data design would have saved time and avoided rework as well as
stress.

Technology Stack
We were fortunate to pick an initial technology stack that did not require significant changes
along the way. We knew that the application would be web-based and that users would need to
be authenticated. We also realized that the platform would be extended in the future. This
made Django a simple framework choice especially since a critical mass of the team was
already familiarly with Python. Using AWS to publish the application was also a clear choice as
multiple team members had knowledge of the AWS landscape.

To support visualizations, we chose Bokeh. No team members had much experience with
Bokeh but its simplicity and customizability made it a compelling choice. We never experienced
any problems with this choice and all became comfortable using it.

Estimates

Page 30

Project Report

We broke our effort down into 3 2-weeks sprints that covered Framework & Infrastructure, Data
Integration and Deployment. This high level outlook helped us break the work into targeted
efforts with distinct milestones at the end of each sprint. Internally, we broke the 2-week sprints
into weekly efforts which further helped us to manage the effort in smaller increments. Although
some tasks slipped at times and new tasks were introduced, we were successfully able to
manage meeting the high level timeline requirements. We did not focus on the hours spent, but
rather the outputs required each week. By tracking the output of efforts rather than the time
spent, we saved project management time and provided team members the flexibility to
individually manage their own commitments. For this project, this output-based measurement
approach made sense since we weren’t paying people by the hour.

Summary
Overall, we all considered our effort a success. We could have done more planning to make the
development effort easier. We were fortunate to have a team that worked well together which
made up for a lack of detailed initial planning and the slow start during the requirements
gathering phase.

Risks

Unavoidable risks

● The application will rely on the accuracy, completeness, and correctness of data from
chosen sources. Data pulled from these sources is assumed to be correct. Errors in the
source data will be propagated to this application. It is also expected that censors may
have problems and not report their data 100% of the time.

● We are reliant upon the various data resources and have no control of any outages,
planned or unplanned, that they might experience.

● Changes in source data could break visualization and create unexpected behavior
without warning.

● Because of the vast amounts of data, the speed of the response is of concern. This is
mitigated by pre-processing the data when possible.

● Regional structures (NUTS regions) might change over time.
● It’s possible that countries in the European Union change over time, such as on

February 1, 2020 when the United Kingdom left. The ramifications of changes to the
data is impossible to determine beforehand.

Page 31

Project Report

● Since the application is targeted towards EU policy makers, errors in the application or
poor representation of the data could lead to inappropriate decisions and/or policies.

● The application is designed to summarize complex scientific data. This may lead to
hidden correlations in data that may be valuable. Detailed analysis on trends observed
in the application is necessary before taking action.

Intentional risks

● Currently, the European Union (EU) has 27 member states and 24 official languages. By
only having the website in English and not providing a translation service, we are taking
the risk of the site not being adopted by some people solely on the language barrier. The
good news is English is the most widely used language in the EU government and is
understood by a little over 50% of the population.

● We are taking a performance/availability risk by not rate-limiting any of our services. So
this application is susceptible to a DDOS attack.

Page 32

Project Report

Appendix A - Requirements

Objective
Build a reporting tool that consolidates data from diverse sources and presents information to
the user in a manner tailed to a users’ persona. User personas are defined by an application
admin that will predetermine the visualizations and pre-filtered values that are presented to all
users who are assigned the same persona. Multiple personas can be created but a user can
only be assigned to one persona.

The user request is summarized into the following two primary areas of focus:

● Combined Data Sources: Organize information from various sources into a
single datastore. Allow new data sources to be added by extending the
application.

● Intuitive GUI: Intuitive and friendly end-user design / cockpit-like format. Tailor
visual presentation of data based on user’s needs.

The ability to combine these two points into a cohesive user experience makes this application
unique.

Target User
The target users of this web application are the Commissioners and Cabinet members from the
28 cabinets in the EU.

There is no public access to this website.

User stories
The requirements outlined in this document have been created to support the following list of
user stories.

1. A Director-General, I would like to be able to filter a general overview of air quality for the
past year

Page 33

Project Report

2. A Director-General, I would like to quickly be able to see which regions are on track to hit
their Green Deal air quality goals

3. As a new commissioner to the EU, I would like to see an overview of the available data
without any kind of setup

4. As a European & International Carbon Markets commissioner, I would like to see if
carbon is increasing or decreasing in the EU

5. As a European & International Carbon Markets commissioner, I would like to see which
regions are releasing the most carbon and which a producing the least

6. As the Road Transport commissioner, I would like to see how much carbon monoxide
and nitrogen dioxide is being produced each year and how the EU is tracking towards
that goal

7. As a Clean Air commissioner, I would like to see which pollutants are and are not on
track to hit the EU’s Green Deal air quality attainment goals

8. As a regional commissioner, I would like to filter based on the countries I am currently
interested in.

9. As an auditing commissioner, I would like to be able to generate a report on how each
NUTS 3 region is tracking towards its air quality goals.

10. As an International Relations commissioner, I would like to view what air pollution levels
are on the edge of the EU’s territory to see if neighboring countries are creating pollution
that is affecting the EU

11. As an admin, I would like to be able to create user persona/user roles.

12. As an admin, I would like to create users and associate them to a user persona/role.

13. As an admin, I would like to be able to view all the default dashboards and filter the
charts based on the dimension filters available.

14. As an admin, I would like to build customized dashboards with multiple charts. Each

such dashboard can be assigned to a user persona/user role. Each chart would have a
pre-defined filtered dataset shown under that chart.

Page 34

Project Report

15. As an admin, I would like to add charts with pre-applied filters to customized dashboards
intended to be created for each user persona.

16. As an admin, I would like to be able to see air pollution data from Copernicus

(Comma-Separated Values [CSV] based data source), EEA (Resource Description
Framework [RDF] based data source) and Eurostat (Representational State
Transfer [REST] based data source).

17. As an application maintainer, I would like to be able to use the RDF based data ingestor

module to point to a different source than EEA and ingest the data given that the
schema of the new data being ingested is the same as specified in the documentation.
The same goes for REST based data ingestor and CSV based data ingestor.

Requirements Summary

Front-End
The proposed application will be accessible via a web front-end. Upon visiting the page
and logging in, a user will be presented with a default cockpit that includes an EU-wide
overview of environmental data. As a proof-of-concept, the delivered application will
restrict this data to ‘air quality’ topics. The cockpit’s visualizations and arrangement will
be tailored to the user’s characteristics as defined by their user id. This data is presented
in “tiles” of information where each tile is a type of visualization. Proposed visualizations
types include maps, charts and KPI’s:

Maps
Map visualizations will show overlays of pollution information. The user will be
able to select different time frames for which to show the overlays and also select
different types of pollution.

Charts
Chart visualizations will present air-quality trends that can be filtered and clicked
from drill-down information.

KPIs
KPI visualizations will display a limited list of key figures that include levels,
values or percentages.

Page 35

Project Report

These ‘tiles’ include various features depending on the visualization type. Features
include, but are not limited to:

● Drill down
● Change time periods displayed
● Add/Remove data dimensions of the content displayed

Using these features, the user will be able to create a display with data of their interest,
yet in a curated fashion so that the user only sees reasonable combinations of data that
are consistent across visualization and other user roles.

When each visualization is presented, data is pulled from the central data store to create
an initial display of data. This data pulled will contain additional data that can be used to
reflect subsequent user-driven filters placed on the visualization. The initial display of
data may take a few seconds, but subsequent filtering should be perceived as
instantaneous. The application will allow new visualizations to be programmatically
added.

Two additional cockpits are proposed:

Regional Cockpit
The regional cockpit will present region-focused visualizations with data for
a selected region or regions.

Trends Cockpit

The trends cockpit will present visualization focused on trends and target
attainments.

Examples of the proposed visualizations and cockpits can be found under the “Software
Design” section of this document.

Roles
The application will support an administrative user role. This role will be able to create
new users and assign users to a user role. The admin can create user roles based on
the interest of the user. Each user role can be configured by the admin to display
selected visualization with selected filtered items to users of a role. Assignment to a role
provides the user with an experience that is aligned with job-relevant objectives.

Back-End
In order to supply the web page with data, a backend is proposed which will accumulate
relevant data from 3 primary sources:

Page 36

Project Report

1. Copernicus
2. EEA
3. Eurostat

The application will support the addition of new external data sources. This effort will
require technical application support, but the effort to make these extensions will be
minimized by the application design.

A constellation of AWS services will be used to update the central data store, process
and clean the data, store the data and deliver the data to the web page. A more detailed
overview of the landscape is available in the “Software Design” section of this document.
The design of the application will allow extensibility for new external data sources.
Extensibility is explained in detail in the Non-Functional Requirements section 2.5 below.

Technical
Python will be the language of choice with Javascript for front-end development. The
delivered application will use Chrome v80 as the target browser.

Detailed Functional Requirements

The list of requirements below is designed to cover the application request in detail and
elaborate on the summary above. Each main section of the requirements is tied to the
application requests.

The requirements below are structured in a hierarchical manner that is arranged to
match the general application architecture (see section: Application Architecture section
of this document). This structure will also serve as a template for detailed application
design.

The detailed requirements are divided into the following sections:

1.0 Functional Requirements
1.1 Data
1.2 Middle Layer
1.3 Front-End

2.0 Non-Functional Requirements
3.0 Stretch Goals
4.0 Out of Scope
5.0 Other Considerations

Page 37

Project Report

Each requirement includes the following attributes:
Description: A short description of the requirement
Effort/Duration: The estimated amount of effort. These are not sequential time
periods and will be converted to time during specification. The effort estimate
includes detailed design, coding, testing, and documentation.
Acceptance Criteria: A description of the required output or the state after the
requirement has been met.
Prerequisites: The efforts necessary before the requirement can be met.

Page 38

Project Report

1.0 DETAILED FUNCTIONAL REQUIREMENTS

1.0 Description: A user will have access to a web-based platform that consolidates data
from diverse external data sources and presents a series of summarized visualizations
that are designed to meet the needs of the specific user. The user can update the data
displayed in order to fine-tune the initial display into something that interests the user.
Effort/Duration: N/A <covers length of project>
Acceptance Criteria: Acceptance of all sub-requirements
Prerequisites: Requirements are complete and understood.

FUNCTIONAL REQUIREMENTS: DATA
Addresses customer requirement “Combine Data Sources” and “Data Dimensions”

1.1 Description: The user will have access to data from a diverse set of external data
sources. These data sources can be expanded to include additional new data
sources.
Effort/Duration: 9
Acceptance Criteria: Multiple data sources are included in the application such
that data from these external sources is extracted, transformed and loaded into a
central database of the application. Provide the services necessary to extract
defined raw data dimensions from defined sources. This includes Python programs
that will access each data source via the externally facing interfaces provided by
each source. These are interface programs that send a query request to the data
source and collect the returned data. This data will be saved into the centralized
application database in a separate step. Interfaces are able to collect the catalog
of required data elements for each of the defined data sources. This can be
measured by checking off each of the cataloged data elements and ensuring they
can be accessed via one of the interfaces created.
Prerequisites: EDA complete and all required data elements cataloged. This
serves as the checklist to ensure all data can be accessed and measure the
completion of this task.

Build External Data Interfaces

1.1.1 Description: Data will be collected from external sources using interfaces. These
interfaces will use a common structure so that interfaces to new data sources can
be built making the application expandable. Interfaces will be built using Python.
These interfaces will collect the specified data as defined in the data catalog
specified in EDA section of this document. These interfaces will serve as API’s

Page 39

Project Report

internal to the application and have a common structure so that structure of each
call for data is the same for all data sources. Defining this common structure will be
an iterative process defined as each data source is understood and the specific
data needed to identify the target data is understood.

The “data api” will be a project-specific module that can be imported into other
modules. A class will be available in this module for every data source. To access
the API, a program will need to instantiate an instance of the class to access the
data access methods for the data source to which the class is dedicated.

Each API should accommodate the following arguments:

- Datasource
- Data Dimensions:

- Time Dimensions: A list of time dimensions that should be
returned. Yearly, monthly, daily, hourly. With hours being the most
granular unit. Multiple time values can be supplied in a list.

- Time Values: A list of lists, where each list represents the time
values corresponding to the ‘Time’ dimensions. The elements in this
list will be the same as the ‘time dimensions’. Each list contains
scalar values of the time periods to collect. An empty list will return
all available times.

- Copernicus pollution unit: A list of Pollution types: Ozone, CO2,
PM 2.5, PM 10, NO2, SO2

- Region: A list of NUTS-specified regional level or levels that should
be returned. (Static region locations updated manually when new
data is available provided by https://ec.europa.eu/eurostat/.)

- Include_children: Boolean value that indicates if all NUTS available
regions below the region/s listed in ‘Region’ should be returned.
Defaults to False.

- Attainment data: Boolean value that indicates whether or not
attainment data should be included in returned values. (Pollution
goal data updated manually when new data is available provided by
the EEA)

Data for each API shall be returned in a standard dictionary structure with the
following keys:

- Time
- Labels - labels for each time dimension
- Values - the values for each time dimension

Page 40

https://ec.europa.eu/eurostat/
http://aideg.apps.eea.europa.eu/?source=%7B%22query%22%3A%7B%22match_all%22%3A%7B%7D%7D%2C%22display_type%22%3A%22tabular%22%7D
http://aideg.apps.eea.europa.eu/?source=%7B%22query%22%3A%7B%22match_all%22%3A%7B%7D%7D%2C%22display_type%22%3A%22tabular%22%7D

Project Report

- Region
- Labels - labels for each region dimension
- Values - the values for each region dimension

- Kind
- A single value that describes the kind of data (e.g. - pollution)

- Elements
- Labels - labels for each element (e.g. “Carbon Dioxide”)
- Values - the key value for each element (e.g. - “CO2)

- Data
- The data points

- Shape
- The array shape of the data (time, region, elements)

Effort/Duration: 4
Acceptance Criteria: An API definition that can be extended to numerous data
sources.
Prerequisites: A catalog of data sources described in the EDA.

1.1.1.1 Description: Build Python interfaces to collect the RDF-data stored in the EEA
(European Environment Agency) data sources. This interface will follow the API
specification outlined in the EDA.
Effort/Duration: 1
Acceptance Criteria: An API exists that can deliver all the data required by the
application as specified in the data catalog in the EDA section of this document
related to the EEA data sources.
Prerequisites:

- Understanding of RDF and SPARQL.
- A completed API specification that the interface will implement as specified

in section 1.2.1 of this document.
- A catalog of data that should be collected from the data source as defined in

the EDA section of this document.

1.1.1.2 Description: Build Python interfaces to collect the REST-based data stored in the
EuroStat data sources. This interface will follow the API specification outlined in
1.2.1.
Effort/Duration: 1
Acceptance Criteria: An API exists that can deliver all the data required by the
application as specified in the data catalog in the EDA section of this document
related to the EuroStat data sources.
Prerequisites:

- A completed API specification that the interface will implement as specified

Page 41

Project Report

in section 1.2.1 of this document.
- A catalog of data that should be collected from the data source as defined in

the EDA section of this document.

1.1.1.3 Description: Build Python interfaces to collect the CSV-based and binary data
stored in the Copernicus data sources. This interface will follow the API
specification outlined in 1.2.1.
Effort/Duration: 1
Acceptance Criteria: An API exists that can deliver all the data required by the
application as specified in the data catalog in the EDA section of this document
related to the Copernicus data sources.
Prerequisites:

- A completed API specification that the interface will implement as specified
in section 1.2.1 of this document.

- A catalog of data that should be collected from the data source as defined in
THE EDA section of this document.

Database

1.1.3 Description: A Centralized RDBMS database will store application data. This
database will serve as the central data repository for the application described in
this document. This database may consist of several tables that have not yet been
defined. The definition of these tables will depend on the detailed application
design and performance under real-World conditions. This database may not be
fully normalized in an effort to place emphasis on the speed of access. This
database will only include data that is collected through the interfaces described in
section 1.2.2 of this document. No other data will exist in this store and no other
sources will provide information to this database. The data in this database will
only be accessible to the application described in this document and will not be
directly available through an API.
Effort/Duration: 3
Acceptance Criteria: Should be able to store data from various sources
Prerequisites: Should know RDBMS

1.1.3.1 Description: Data entities will be created based on the application ontology
Effort/Duration:1
Acceptance Criteria: Complete data can be represented in RDBMS
Prerequisites: EDA complete

1.1.3.2 Description: ERM will be created based on defined entities
Effort/Duration:1

Page 42

Project Report

Acceptance Criteria: All relations between entities are captured in the model
Prerequisites: Data entities defined. Metadata defined from data sources.

1.1.3.3 Description: RDBMS schemas will be built to reflect the data necessary in the
application as defined in the EDA.
Effort/Duration: 1
Acceptance Criteria: Data from various sources can be put into schemas
Prerequisites: Data sources should be analyzed

Build Data Processing Logic

1.1.4 Description: An Extract/Transform/Load (ETL) series of services will be created.
Effort/Duration: 9
Acceptance Criteria: Data should be loaded to RDBMS
Prerequisites: RDBMS and Data sources are available

1.1.4.1 Description: An AWS service will be used to extract data. This service will use
the APIs created in section 1.2.1 which standardize access to the data sources
used by this Application as described in the EDA section of this document. A
scheduler will access the services established in this section to collect data on
intervals specified by the update frequency of the source.
Effort/Duration: 2
Acceptance Criteria: AWS can extract all data necessary to populate the
application central data store described in section 1.2.3.
Prerequisites: All APIs are completed which are designed to access data from the
application’s external data sources.

1.1.4.2 Description: An AWS service will be configured to transform data (clean, calculate
and extend data). Initially, no ML/DL transformations are foreseen. Shall these be
added later, they would extend this requirement. Currently, the exact
transformations to existing data are unknown until data extracts are complete and
the resulting data is analyzed. These transformations may include data formats,
data corrections, data scaling, standardization/normalization of data or possibly
calculations based on combinations of data. This effort includes defining the
transformations necessary as well as documenting the transformations.
Effort/Duration: 4
Acceptance Criteria: Services created can prepare all data so that it can be stored
in the centralized application database and their use and processes are
documented.
Prerequisites: Data should be accessible as defined in section 1.2.4.1.

1.1.4.3 Description: AWS services will be configured to load data. This effort includes
storing transformed data into the application database.
Effort/Duration: 2

Page 43

Project Report

Acceptance Criteria: Data should be loaded to the application database and
available for access by the middle-layer APIs described in section 1.3.
Prerequisites: RDBMS should be available for loading data as described in section
1.2.3.

1.1.4.4 Description: AWS services will be configured to schedule ETL processing. This
includes defining the update interval for data elements and setting up the AWS
service to execute API calls and subsequent data loads for data updated in the
external sources.
Effort/Duration: 3
Acceptance Criteria: Data should be updated at a defined frequency from the
external source.
Prerequisites: Frequencies should be defined for various data sources that need
to be updated.

FUNCTIONAL REQUIREMENTS: MIDDLE-LAYER
Enables customer requirement “Intuitive GUI”

1.2 Description: Use Django web-server framework will be configured to handle and
present data. The webserver framework for this application will be python-based as
the result of a Python focus requested by the customer.
Effort/Duration: 7
Acceptance Criteria: A basic framework has been put in place with a designated web
address where site pages and respective logic can be stored. To complete this task,
only a simple “Hello World”-like the response is necessary.
Prerequisites: A web hosting service must be determined. We anticipate that AWS
EC3 will be used.

1.2.1 Description: ORM Models will connect front and back ends. The web server logic will
require a series of ORM definitions to hold data captured from the database which will
ultimately be used to present data. We anticipate that an ORM model will be required
for each distinct visualization defined (see Front-End section of this document for the
visualizations proposed.)
Effort/Duration: 3
Acceptance Criteria: An ORM is defined for each visualization and mapping defined
to each ORM’s data source. Be able to query tables using ORM objects and allow
access to the database data and schema using abstractions.
Prerequisites: Database schema needs to be finalized before this step.

1.2.2 Description: A middle-layer API service will be built to support front-end UI design.

Page 44

Project Report

The structure and definition of these API’s should mirror the structure defined in
section 1.2.1. In that section, access to each data source is defined. In this section,
access to the internal application database is defined. These two structures should be
the same with only minor deviation.
Effort/Duration: 3
Acceptance Criteria: All data used by the front-end application is available through a
defined API. Each API parameter is documented and graceful error handling is
implemented so that the application will not crash if called data does not exist.
Prerequisites: ORM models are complete to serve as data objects for API.

1.2.3 Description: A publicly accessible endpoint/website will be provided. AWS EC2
service will be used to host the Django webserver.
Effort/Duration: 1
Acceptance Criteria: URL address is publicly accessible.
Prerequisites: Need to have AWS account

1.2.4 Description: The application will support an application user role. A user will not
have access to any administrative feature of the application.
Effort/Duration: 1
Acceptance Criteria: User role is available that allows the user to view pages in the
application with no access to any administrative tasks (like assigning new users or
creating roles.)
Prerequisites: None

1.2.5 Description: The application will support an application administrator role.
Effort/Duration: 1
Acceptance Criteria: New user creation will allow the administrator role to be selected
which allows the admin user to create new users and create new roles. User’s setup
as administrator will have an admin attribute assigned to their user id.
Prerequisites: None

1.2.6 Description: The application will support user identity through login. Each user will
be required to login before being presented with data. The user will not self-register for
access and will instead need to request access which will be granted by an application
administrator.
Effort/Duration: 1
Acceptance Criteria: Login screen is available. Upon login, user-specific meta-data
is available which can be used by the front-end to determine how data is displayed.
Prerequisites: None

1.2.6.1 Description: The application will support the addition of a new user by an admin user.
Before using the application, a user will require a user ID. This ID is established by a
centralized administrator user. The administrator will require a user-administration
page that is only accessible to the administrator.

Page 45

Project Report

Effort/Duration: 1
Acceptance Criteria: A
Prerequisites:

1.2.6.2 Description: The application will support the creation and maintenance of user roles.
An administrative user will have the ability to create new user roles which can later be
assigned to users. The user’s role will define what the user sees when logging in to
the application.

Each role will include the following list of maintainable characteristics:

- The number and arrangement of specifically-filtered visualizations on the home
page cockpit.

- Each visualization assigned to a role can be further refined with the
visualizations default time dimension, data content selected and default region
selection.

- The location of each visualization can also be defined by the admin user.

Examples of roles are:

- General (the layman)
- Transport
- Economy
- Top-Level (Commissioner)
- Goal-Attainment
- Regional (specific region)

Effort/Duration: 3
Acceptance Criteria: An administrative user has access to a User Management
section where new users can be added and the region and default visualizations can
be defined. All visualizations available in the application will be presented dynamically
so that the new specific process is necessary to make a visualization available to the
administrative user when assigning a role.
Prerequisites: An admin role is available within the platform.

1.2.6.3 Description: Each user will be assigned a user role. When creating a new user, the
administrative user will assign each user with a role. Only one role is required, but
including multiple roles can be supported if possible (multiple role assignments is not a
requirement but can optionally be included).
Effort/Duration: 1
Acceptance Criteria: The new user process includes the ability to assign a role.
Prerequisites: Admin user is available in the application.

Page 46

Project Report

FUNCTIONAL REQUIREMENTS: FRONT-END
Addresses customer requirement “Intuitive GUI”

1.3 Description: Air Quality Reporting Dashboard will be created for users
Effort/Duration: N/A <covers length of project - non contiguous effort>
Acceptance Criteria: Customer acceptance of look and feel as well as data
Prerequisites: Backend and middle layers functional with data defined and available.
Required completed ORM model for front-end data handling.

Visualizations

1.3.1 Description: Front-end visual elements will be created that include dimensions such
as: time series, pollutant, NUTS 3 regions, and country regions. Additional statistical
figures like population density levels may be included. The data presented in each
visual element is determined by the user role.

Effort/Duration: 10
Acceptance Criteria: A completed set of visual element sketches that present visual
representations of air quality in the EU.
Prerequisites: The available data on air-quality is cataloged as described in the EDA
section of this document.

1.3.1.1 Description: A map overlay visualization (see wireframe) will be created. The
pollutant type can be overlayed onto a European map. Such a visualization should
include the option to see the overlay for different time periods. Each map will only
contain a single overlay but will distinguish the intensity of the pollutant. When first
presented to the user, the configuration of the visualization is defined by the user
role.
Effort/Duration: 3
Acceptance Criteria: Sketches that show the possible map overlay options which
include the set of pollutants and possible pollutant sources which are in the
supporting data set.
Prerequisites: The data available for map overlays are cataloged.

1.3.1.2 Description: A hierarchy of drill down-capable chart visualizations (see wireframe)
will be created including drill-down by pollutant-type and region. The drill-down may
display an updated chart or the detailed underlying data depending on the level of
available detail in the chart. Chart data can be downloaded by the user to a local
CSV-type file format. When first presented to the user, the configuration of the
visualization is defined by the user role.

Effort/Duration: 3

Page 47

Project Report

Acceptance Criteria: A set of sketches that show the possible charting options
which cover the air-quality data supported by the application.
Prerequisites: A catalog of air-quality data from all sources.

1.3.1.3 Description: A table/tabular visualization (see wireframe) will be created. Tabular
visualization contains traditional row/column formats. Table data can be downloaded
by the user to a local file in a CSV-like format. When first presented to the user, the
configuration of the visualization is defined by the user role.

Effort/Duration: 3
Acceptance Criteria: A set of sketches that show the possible tables which will be
available in the application.
Prerequisites: A catalog of air-quality data from all sources.

1.3.1.4 Description: A KPI visualization (see wireframe) will be created. KPI visualizations
contain a specific data point of a single dimension and will contain a single value or a
pair of values. (e.g. - current Ozone measure, target attainment percentage). When
first presented to the user, the configuration of the visualization is defined by the user
role.

Effort/Duration: 1
Acceptance Criteria: A set of sketches that show the KPI visualizations supported
by the application. As the list of possible displayed KPI’s may belong, a list of KPIs
that are displayed may be provided with a single example of the visual representation
of the data.
Prerequisites: A catalog of air-quality data from all sources.

1.3.1.5 Description: A filtering and navigation structure will be created giving the user the
ability to navigate to new visualizations as well as to refine the data in the current
visualizations.

Effort/Duration: 3
Acceptance Criteria: A navigation structure design is available that enables the user
to reach the data available in the application with a minimal number of steps.
Prerequisites: The set visualizations and the data which each visualization can
display is available.

Dashboards

1.3.2 Description: A default dashboard landing page will be created. This default page’s
visualizations and filtered settings will be defined based on the user's user role.
Includes: EU-level Air quality trends based on year region and pollutant, Goal
attainment, Map overlay. The default landing page will be configured to show the

Page 48

Project Report

user a high-level overview of current EU-wide data. The default page provides the
user with an expectation of the visualizations possible and guides the user into
refining the page to explore additional data. When a user visits the dashboard, the
visualizations presented and their content will be defined by the role assigned to the
user.

Effort/Duration: 4
Acceptance Criteria: A wireframe is available that shows the landing page which
covers EU-wide information.
Prerequisites: Visualizations are defined.

1.3.3 Description: A dashboard will be created that focuses on Trends. The trend
visualizations will be defined by the user’s user role. Users will be able to analyze
trends (time series analysis) for region, pollutant and pollutant sources. Such a
dashboard focuses on timeline trends for various pollutants and sources over a
period of time for a selected regional level. When a user visits the dashboard, the
visualizations presented and their content will be defined by the role assigned to the
user.

Effort/Duration: 3
Acceptance Criteria: A wireframe is available that shows a page of trend-like
visualizations that can be refined to display various dimensions of data supported by
the application.
Prerequisites: Visualizations are defined.

1.3.4 Description: A dashboard page that focuses on Regional information will be
created. The visualizations and content will be defined by the user’s user role. Users
will be able to analyze data per region. The Regional Dashboard will focus on various
different visualizations that pertain to a chosen region. This view may contain any
combination of charts, KPIs and maps only specific to a region. When a user visits
the dashboard, the visualizations presented and their content will be defined by the
role assigned to the user.
Effort/Duration: 3
Acceptance Criteria: A wireframe is available that shows a page of visualizations
covering a user-selected region.
Prerequisites: Visualizations are defined.

Authentication

1.3.5 Description: Users will access the application using a login id and password. Each
user will require an id to access the application. This account will be tied to a user
role which will drive the visualizations displayed to the user including the
configuration of each visualization. Upon visiting the page, the user is presented with
a login screen or the ability to follow a process for requesting access. Security will be

Page 49

Project Report

limited to off-the-shelf security tools available. No enhanced or special security will
be provided. No adherence to GDPR will be included. No cookies will be used. No
application state will be saved locally or centrally meaning that any filters or
visualization settings set during a session will be saved for a subsequent visit.
Effort/Duration: 1
Acceptance Criteria: Users can log in and a default region is selected after login as
well as a selected dashboard.
Prerequisites: None

1.3.6 Description: User ID request. The user will have the ability to follow a process for
requesting a new user account. Requests are routed to the admin user of the
account. When requesting access, the user must identify his/her role.
Effort/Duration: 1
Acceptance Criteria: The login page has a link to a ‘new user request’ option that
allows the user to self-select a role. Completed requests are routed to the admin
user.
Prerequisites: None

2.0 NON-FUNCTIONAL REQUIREMENTS

2.1 Description: Intuitive GUI. The application should be simple for users to understand
and navigate and allow users to understand the data available as well as the data being
presented.

2.2 Description: 4-9’s of availability. 99.99%

2.3 Description: Data Refresh. Copernicus data will be refreshed once per day (at
midnight). All other data sources will be updated manually when new data is available.
This includes Attainment Data and updated NUTS 3 regions. Country regions will be
inherited by the plotting library we use (e.g. Plotly or matplotlib basemap).

2.4 Description: Speed. When each visualization is created, data is pulled from the
central data store. This data will contain the data necessary to display the visualization
plus additional data that may be shown in the visualization after the user makes
changes to the visualization filter. The initial display of data may take a few seconds,
but subsequent filtering should be perceived as instantaneous.

2.5 Description: The application should be built so that it can be extended for additional
data sources. Data will originate from 3 primary types of data stores: RDF based data
source, REST-based data source and CSV based data source.

Page 50

Project Report

When adding a new data source that includes one of these 3 data types, the following
efforts will be necessary to create a new interface:

1. For each time series in the new data source, a mapping of data fields and
conversion of values will be necessary. This effort must ensure that newly
interfaced time series data is supported by and understood by the application
and that the values have the proper type supported by the application.

2. The regional dimension of data must be aligned with the application. The
regions identified in the source data must be mapped to the existing regions
supported by the application. When interfacing to the external data, the
interface will map the source region to the respective region in the application’s
database. The will require an identification of the source’s relevant fields and
values and any values not aligned to the application will need to be mapped
accordingly.

3. The addition of new dimensions will require a more extensive application
change including changes to the database schema. Adding new dimensions is
not part of the application’s extensibility.

2.6 Description: Mobile-Friendly. The application web page should be mobile friendly and
designed so that pages render in a usable manner on smaller mobile devices.

2.7 Description: Target user. The target users of this web application are the
Commissioners and Cabinet members from the 28 cabinets in the EU. They will be
given credentials from admin to access the website based on their roles. There is no
public access to this website.

EDA

2.8 Description: Exploratory Data Analysis (EDA). This effort represents the work of
learning the data that is available in the data sources in more detail. This includes not
only what the data represents, but also the names of the fields in the data. Other
information includes the size of the data sources, how frequently they are updated, how
reliable the data is and if it contains errors, the key fields in data stores, how data is
linked together with other data sources and the latency associated with accessing
individual or groups of records. Data will not be collected ‘just-in-case’ since the cost of
including unused data is expected to drive increased costs and access times.
Effort/Duration: 3
Acceptance Criteria: Data sources and elements cataloged and access points to data
sources identified. A listing of the data sources with the following items:

- Name of data source
- How to access the data source
- How long records take to access

Page 51

Project Report

- What the data represents
- The data types of data elements
- An estimate of the accuracy of the data
- The frequency which the data is updated
- A mapping of record names and descriptions
- Any metadata associated with datasets

2.8.1 Description: The data sources will be restricted to the following:
- EEA
- EuroStat
- Copernicus

No other datasets will be explored or included in the solution. It is possible that
not all data from each of the sources will be included in the application, but
rather, a subset that represents air-quality related information. It is possible
that data such as population density levels may also be included but only to the
extent that it can be related to air quality.

Effort/Duration: Part of EDA which has 3 points of effort.
Acceptance Criteria: Sources of data are cataloged as described in the EDA section
of this document.
Prerequisites: Project Objective Defined. An understanding of what the project should
deliver is necessary before the relevant data can be selected.

2.8.2 Description: Restrict data elements to air-quality topics. The application will focus on
air-quality information only. No other environmental aspects will be covered. This
includes the pollutants in the air as well as the sources. Define and document data
elements required from each data source. Understand the air-quality relevant data
tables and fields that will be useful in application. The following is a list of pollutants
that will be included in the data:

H4 - Methane

CH4_CO2E - Methane (CO2 equivalent)

CO2 - Carbon dioxide

GHG - Greenhouse gases (CO2, N2O in CO2 equivalent, CH4 in CO2 equivalent, HFC in

CO2 equivalent, PFC in CO2 equivalent, SF6 in CO2 equivalent, NF3 in CO2 equivalent)

HFC_CO2E - Hydrofluorocarbons (CO2 equivalent)

HFC_PFC_NSP_CO2E - Hydrofluorocarbons and perfluorocarbons - not specified mix (CO2

equivalent)

N2O - Nitrous oxide

N2O_CO2E - Nitrous oxide (CO2 equivalent)

NF3_CO2E - Nitrogen trifluoride (CO2 equivalent)

PFC_CO2E - Perfluorocarbones (CO2 equivalent)

SF6_CO2E - Sulphur hexafluoride (CO2 equivalent)

Air-quality data will not include the source of pollutants. The source list is 170 elements

Page 52

Project Report

long which contributes to a complexity not intended for the high-level audience.
Forming visualizations to properly interpret such a long list is beyond the time-scope for
this project.

The data collected will include map overlay data for each of the pollutants as well as
absolute values of the pollutant data. These data points will be available for all regions
that are published. These regions are defined by NUTS 3 regions in the EU. There are
several levels of regional representations that have changed over the years. The
complexity of tracking these changes and displaying values by region would be
complex to deliver visually. Instead, the only NUTS 3 regions that will be represented
are the latest regions along with country regions.

Effort/Duration: 3
Acceptance Criteria: Catalog of data sources, tables and elements is available
including data descriptions
Prerequisites: Data sources defined

3.0 STRETCH GOALS

3.0 Description: Stretch Goals

3.1 Description: (Stretch goals) Searching keywords should update the dashboard
Effort/Duration: 5
Prerequisites: Complete dashboard pipeline should work before this.
Acceptance Criteria: User should be able to search keywords and dashboard should
update accordingly.

3.2 Description: (Stretch goals) Forecasting data. Using ML/DL to forecast or project
values. This goal carries a risk of setting expectations that are not validated by an
expert. Considering the topic this may have political ramifications or even societal
implications if the forecasts are not accurate and the data is relied upon.
Effort/Duration: 5
Prerequisites: Should be done with Data part of this project.
Acceptance Criteria: Projected values should follow the ML/DL

3.3 Description: (Stretch goals) Authenticated access to application / User Customization.
In the event this goal is pursued, an application security strategy will be required.
Currently, security is out of scope.
Effort/Duration: 5

Page 53

Project Report

Prerequisites: Default dashboard should be available.
Acceptance Criteria: Users should be able to login and should have a personalized
default page.

4.0 OUT OF SCOPE

4.0 Description: Out Of Scope

4.1 Topic: Chatbot
Description: A chatbot feature will not be included in the scope of the application.
Including a chatbot could be included in a second version of the product, but for the
initial design, it was determined that a chatbot would lead to a poor user experience
since only limited free-form user requests would likely be met with a desired response.
Instead, the focus is on ensuring that the user will get an expectation of the output at
the moment of landing on the home page and guided to a refined solution through filters
and links.

4.2 Topic: User-defined customizations
Description: The user will not have the ability to customize any default visualization
settings. The user can update defaulted elements, but any filtered updates selected by
the user are not saved. The environment presented to the user will be defined by the
role set under the user’s ID. Each user of the same role will see the same set of
visualizations. No cookies will be used to capture the user state.

4.3 Topic: Multi-language support
Description: In this project scope we decided to provide English language support
only. Multi-language support could be a future enhancement to this project.

4.4 Topic: Security
Description: No data security issues will be considered. The platform contains publicly
available information and no personal user data. User authentication is being done but
no personal information is saved.

4.5 Topic: Stand-Alone Application
Description: The application will be web-enabled with no stand-alone application.

4.6 Topic: Air Pollutant Sources

Page 54

Project Report

Description: The source of air pollutants will not be covered in the application. The list
of pollutants is 170 elements long which will make the intuitiveness of the application
difficult to realize in the timeframe allocated for the project.

4.7 Topic: API
Description: No API will be provided by the application which allows direct access to
the data shown in the web interface. The only way to access the data is through the
web presentation and any respective download options supplied by certain views.

4.8 Topic: GDPR Compliance
Description: No consideration for GDPR compliance will be included. To the extent
that any default user authentication service which is selected provides GDPR by
default, it will be available, but no review or audit of the application will be done to
guarantee adherence to GDPR guidelines.

OTHER

5.1 Topic: Site Availability
Description: The site will be available for review during a limited time and terminated
after the semester is over. At this point, the publicly hosted presence will be taken
down. At the customer’s request, the application can be set up on a customer supplied
AWS environment provided that the credentials for the environment are provided at the
onset of the project.

5.2 Topic: Documentation
Description: Application code and service configurations will be documented including
any setup scripts. All documentation will be made publicly available and will be at the
published destination (BitBucket) for a period of 1 year after the project is completed.

Prioritization
Must:

● Have visualizations for air quality data
● Support time-series trends (down to daily) for air quality data
● Display regional data at a country level
● Compare actual data versus attainment goals
● Mobile-friendly web application

Page 55

Project Report

● Be built with Python
● Support user logins
● An administrator will set up users
● Have unique views per user type

Should:

● Display data at a NUTS 3 regional level
● Indicate outliers by region by pollutant levels

Could:

● Visualize a time series playback of pollution levels across Europe
● Store state of filters when users login the next time they visit the application

Won’t:

● Support languages beyond English
● Implement GDPR compliance
● Create an API
● Support a chatbot
● Support user-created customizations
● Be available to the general public

Page 56

Project Report

Appendix B - UI Wireframes

Page 57

Project Report

Page 58

Project Report

Page 59

Project Report

Page 60

Project Report

Appendix C - ERM

Page 61

Project Report

Appendix D - Sequence Diagram

Sequence diagram for when a visualization gets updated.

Page 62

Project Report

Appendix E - Sprint Estimations

Sprint 1 - Framework and Infrastructure (2-weeks)

Description
Est. Effort

(person-days)
Actual Effort
(person-days)

Setup Django Framework 4 2

Implement Design Template for Site 3 3

Setup Git process 1 1

Enable User Authentication 1 1

Design Admin Process and Pages 4 3

Design Persona Process and Pages 6 5

Enable Docker-based Postgres Database 2 1

Design Extensible Model for Data 3 2

Make Web design mobile friendly 4 5

Create Model and Data Load for Regions 5 5

Create Model and Data Load for EEA
Annual Pollution

6 6

Create Model and Data Load for Ground
Observation Stations

7 10

Create Model and Data Load for Satellite
Images

4 5

Create Model and Data Load for Pollution
Targets

3 1

TOTAL 53 50

Sprint 2 - Integrate Data (2-weeks)

Description Est. Effort Actual Effort

Page 63

Project Report

(person-days) (person-days)

Document API. The API will sit between
the front end and the back end data. The
API will aggregate data from various data
sources hosted in the application.

4 2

Provide API data access: Regions 4 2.5

Provide API data access: Observation
Stations

3 5

Provide API data access: Satellite Images 1 3

Provide API data access: Pollution Targets 2 1

API Function: Annual Pollution 2 .5

API Function: Maps 1 .5

API Function: Daily Pollution Values 3 .5

API Function: Annual Pollution Values 2 .5

API Function: Satellite Images 1 .5

Design extensibility into visualizations 5 0

Landing Page 2 3

Add DataSource for EEA Population Data
by Region

3 4

Enhance Mobile experience 2 3

Extend Map Visualization Filters
(pollutant/country)

3 3

Document Data Model 1 1

Add Line Chart visualization 2 1

Use Line Chart to plot EEA Year Pollution
data

2 3

Add map visualizations to home page and 2 2

Page 64

Project Report

dashboards

TOTAL 45 36

Sprint 3 - Deploy - Refine (2-weeks)

Description
Est. Effort

(person-days)
Actual Effort
(person-days)

Clean and Document Data Loading and
Model Code

5 3

Clean and Document API Code 5 2

Clean and Document Visualization
Management

5 1

Clean and Document Views Code 5 1

Refine Visualizations 15 20

Implement Python documentation 10 10

Deploy to AWS 3 5

Adjust Application for Flexible deployment
locations

2 3

TOTAL 50 45

Final Effort - Documentation / Publication / Presentation (2-weeks)

Description
Est. Effort

(person-days)
Actual Effort
(person-days)

Finalize End User and Developer
Documentation

15 8

Complete Paper for publication 20 2

Prepare Final Presentation 20 10

TOTAL 50 20

Page 65

Project Report

Appendix F - API Documentation
Summary

The Air Quality API exposes all the information required to successfully visualize air quality data
associated with the EU Green Deal.

/aq_api/daily
Provides pollutant levels in units of micro g/m3 by region, pollutant, and date.
Note: This API method works for dates after July 15, 2015

/aq_api/annual
Provides pollutant levels in units of micro g/m3 by pollutant, country, and year.
Note: This API method only provides annual data from [START DATE] through [END DATE]

/aq_api/targets
Provides a list of target emission levels by region, pollutant type, and year.

/aq_api/sectors
Provides pollutant levels in Gg (1000 tonnes) by sector, pollutant, country, and year.
Note: This API method works from dates 1990 through 2017

/aq_api/region_info
Provides a list of NUTS regions and associated information.

/aq_api/region_boundaries
Provides a list bounding shapes for NUTS regions.

All responses are formatted in JSON.

Responses

Page 66

https://docs.google.com/document/d/1saez6QW-cXMATwMG6F1O0RkZuXX-6IjMcW3dxkWLHgo/edit#bookmark=kix.on7819rvszbo

Project Report

● OK indicating the API request was successful.
● INVALID_REQUEST indicating the API request was malformed
● OUT_OF_BOUNDS_TIME indicating the API dates are outside of the supported time

range for that request
● REQUEST_DENIED indicating the API did not complete the request.
● UNKNOWN_ERROR indicating an unknown error.

Method details

/aq_api/daily
Provides pollutant levels in units of micro g/m3 by region, pollutant, and date.

Example request:

http://localhost:8000/aq_api/daily?version=v1&

regions=de,fr,be&
pollutants=o3,co&
start-date=2020-03-19&
end-date=2020-03-19

Request parameters:

parameter type description

version String Default=None.
API version (e.g - ‘v1’). If blank, default to the current version.

pollutants [String] A list of pollutant-types to be returned. Options include:

● o3 Ozone
● co: Carbon monoxide
● no2 Nitrous dioxide
● so2 Sulfur dioxide
● pm25 Particulate matter (droplets that are 2.5 microns or

less)

Page 67

http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025

Project Report

● pm10 Particulate matter 10 (droplets that are 10 microns
or less)

● pans Peroxyacyl nitrates
● nmvoc Non-methane volatile organic compounds
● no Nitrous oxide
● nh3 Gaseous ammonia

regions [String] Default=None.
This can be any NUTS code for NUTS0, NUTS1, NUTS2 or
NUTS3. If blank, all regions are returned.

Options include

NUTS 1 (countries):

● at Austria
● cz Czech Republic
● de Germany
● dk Denmark
● ee Estonia
● fi Finland
● fr France
● el Greece
● hu Hungary
● hr Croatia
● ie Ireland
● it Italy
● lt Lithuania
● lu Luxembourg
● lv Latvia
● mt Malta
● nl Netherlands
● pl Poland
● pt Portugal
● ro Romania
● es Spain
● se Sweden
● si Slovenia
● sk Slovakia
● al Albania
● me Montenegro
● mk North Macedonia
● rs Serbia
● tr Turkey

Page 68

Project Report

● ch Switzerland
● is Iceland
● li Liechtenstein
● no Norway
● uk United Kingdom

NUTS 2 examples: (Full list here)

● at-11 Burgenland
● de-94 Weser-Ems

NUTS 3 examples: (Full list here)

● at-111 Mittelburgenland
● be-341 Arr. Arlon

start-date String The start date of the range to be returned:
YYYY-MM-DD (eg 2020-01-01)

end-date String The end date of the range to be returned (inclusive):
YYYY-MM-DD (eg 2020-01-01)

Response values:

parameter type description

region String Regions codes will match the region codes from the request.

pollutant String Pollutant codes will match the pollutant codes from the request.

date String The dates of the corresponding air quality values.

avg-level Float The average pollutant level in units of micro g/m3.

ytd-level Float The average pollutant level in units of micro g/m3 up until this
date

{

 "de" : {

 "2020-03-19" : {

Page 69

https://tbed.org/eudemo/index.php?function=search
https://tbed.org/eudemo/index.php?function=search

Project Report

 "o3" : {

 "day-avg-level": 66.2,

 "ytd-avg-level": 67.4

 },

 "co" : {

 "day-avg-level": 5000.3,

 "ytd-avg-level": 67.6

 }

 },

 "2020-03-20" : {

 "o3" : {

 "day-avg-level": 69.2,

 "ytd-avg-level": 67.4

 },

 "co" : {

 "day-avg-level": 5001.3,

 "ytd-avg-level": 67.6

 }

 }

 }

}

/aq_api/annual
Provides pollutant levels in units of micro g/m3 by pollutant, country, and year.

Example request:

For all pollutants, all countries, all years:
http://localhost:8000/aq_api/annual?version=v1

Page 70

http://127.0.0.1:8000/aq_api/v1/1001025

Project Report

For a set of countries, pollutants and/or years:
http://localhost:8000/aq_api/annual?version=v1&

countries=de,fr,be&
years=2016,2017,2018&
pollutants=o3,co

parameter type description

version String Default=None.
API version (e.g - ‘v1’). If blank, default to the current version.

countries
(optional)

[String] Default=None.
If blank, all countries are returned.

A list of nuts regions to be returned. Options include:

● at Austria
● cz Czech Republic
● de Germany
● dk Denmark
● ee Estonia
● fi Finland
● fr France
● el Greece
● hu Hungary
● hr Croatia
● ie Ireland
● it Italy
● lt Lithuania
● lu Luxembourg
● lv Latvia
● mt Malta
● nl Netherlands
● pl Poland
● pt Portugal
● ro Romania
● es Spain
● se Sweden
● si Slovenia
● sk Slovakia

Page 71

http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025

Project Report

● al Albania
● me Montenegro
● mk North Macedonia
● rs Serbia
● tr Turkey
● ch Switzerland
● is Iceland
● li Liechtenstein
● no Norway
● uk United Kingdom

years
(optional)

[Int] Default=None.
 4-digit year/s for which the target value is being requested. If
blank, all available years are returned.

pollutants
(optional)

[String] A list of pollutant-types to be returned. Options include:

● o3 Ozone
● co: Carbon monoxide
● no2 Nitrous dioxide
● so2 Sulfur dioxide
● pm25 Particulate matter (droplets that are 2.5 microns or

less)
● pm10 Particulate matter 10 (droplets that are 10 microns

or less)
● pans Peroxyacyl nitrates
● nmvoc Non-methane volatile organic compounds
● no Nitrous oxide
● nh3 Gaseous ammonia

Response values:

key type description

country String Country code will match the country codes from the request.

year Int 4-digit value of the year of the target

pollutant String Pollutant codes will match the pollutant codes from the request.

Page 72

Project Report

{

 "de": {

 "2011": {

 "co": 50000,

 "no2": 50000,

 "o3": 50000,

 "pm10": 50000,

 "pm25": 50000,

 "so2": 50000

 },

 "2012": {

 "c6h6": 50000,

 "co": 50000,

 "no2": 50000,

 "o3": 50000,

 "pm10": 50000,

 "pm25": 50000,

 "so2": 50000

 }

 }

}

/aq_api/targets
Provides a list of target emission levels by region, pollutant type, and year.

Example request:

Page 73

Project Report

For all pollutants, all regions, all years:
http://localhost:8000/aq_api/targets?version=v1

For a set of regions, pollutants and/or years:
http://localhost:8000/aq_api/targets?version=v1&

regions=de,fr,be&
years=2016,2017,2018&
pollutants=o3,co

parameter type description

version String Default=None.
API version (e.g - ‘v1’). If blank, default to the current version.

regions
(optional)

[String] Default=None.
This can be any NUTS code for NUTS0, NUTS1, NUTS2 or
NUTS3. If blank, all regions are returned.

Options include

NUTS 1 (countries):

● at Austria
● cz Czech Republic
● de Germany
● dk Denmark
● ee Estonia
● fi Finland
● fr France
● el Greece
● hu Hungary
● hr Croatia
● ie Ireland
● it Italy
● lt Lithuania
● lu Luxembourg
● lv Latvia
● mt Malta
● nl Netherlands
● pl Poland
● pt Portugal

Page 74

http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025

Project Report

● ro Romania
● es Spain
● se Sweden
● si Slovenia
● sk Slovakia
● al Albania
● me Montenegro
● mk North Macedonia
● rs Serbia
● tr Turkey
● ch Switzerland
● is Iceland
● li Liechtenstein
● no Norway
● uk United Kingdom

NUTS 2 examples: (Full list here)

● at-11 Burgenland
● de-94 Weser-Ems

NUTS 3 examples: (Full list here)

● at-111 Mittelburgenland
● be-341 Arr. Arlon

years
(optional)

[Int] Default=None.
 4-digit year/s for which the target value is being requested. If
blank, all available years are returned.

pollutants
(optional)

[String] Default = None.
If None, all available pollutant values are returned.

Any number of the following pollutants can be included in the list.
The values are not case-sensitive.

A list of pollutant-types to be returned. Options include:

● c6h6 Benzene
● co: Carbon monoxide
● no2 Nitrous dioxide
● o3 Ozone
● pm10 Particulate matter 10 (droplets that are 10 microns

or less)

Page 75

https://tbed.org/eudemo/index.php?function=search
https://tbed.org/eudemo/index.php?function=search

Project Report

● pm25 Particulate matter (droplets that are 2.5 microns or
less)

● so2 Sulfur dioxide

(This list represents the available pollutants in the published
targets)

Response values:

key type description

region String Region code will match the region codes from the request.

year Int 4-digit value of the year of the target

pollutant String Pollutant codes will match the pollutant codes from the request.

{'DE':

 {2019:

 {'PM25':

 {'calendar_year': {'value': 25.0, 'count_limit': 25.0, 'unit': 'ug/m3'}},

 'PM10':

 {'day': {'value': 50.0, 'count_limit': 50.0, 'unit': 'ug/m3'},

 'calendar_year': {'value': 40.0, 'count_limit': 40.0, 'unit': 'ug/m3'}},

 'O3':

 {'max_8hour_mean': {'value': 120.0, 'count_limit': 120.0, 'unit': 'ug/m3'}},

 'NO2':

 {'hour': {'value': 200.0, 'count_limit': 200.0, 'unit': 'ug/m3'},

 'calendar_year': {'value': 40.0, 'count_limit': 40.0, 'unit': 'ug/m3'}},

 'CO': {},

 'SO2': {},

 'PANS': {},

 'NMVOC': {},

 'NO': {},

 'NH3': {},

 'BIRCHPOLLEN': {},

 'OLIVEPOLLEN': {},

Page 76

Project Report

 'GRASSPOLLEN': {},

 'RAGWEEDPOLLEN': {},

 'PB': {},

 'NI': {},

 'CR': {},

 'CD': {},

 'CU': {},

 'AS': {},

 'NOX': {},

 'SOX': {}},

 2020: { ...

/aq_api/sectors
Provides emissions data by sector, pollutant, country, and year.
Note: This API works for dates 1990 through 2017

Example request:

For all pollutants, all countries, all sectors, and all years:
http://localhost:8000/aq_api/sectors?version=v1

For a set of pollutants, countries, sectors, and/or years:
http://localhost:8000/aq_api/sectors?version=v1&

countries=de,fr,be&
years=2016,2017,2018&
pollutants=o3,co&
sectors=oil-gas-production

parameter type description

Page 77

http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025

Project Report

version String Default=None.
API version (e.g - ‘v1’). If blank, default to the current version.

countries
(optional)

[String] Default=None.
If blank, all countries are returned.

A list of countries to be returned. Options include:

● at Austria
● cz Czech Republic
● de Germany
● dk Denmark
● ee Estonia
● fi Finland
● fr France
● el Greece
● hu Hungary
● hr Croatia
● ie Ireland
● it Italy
● lt Lithuania
● lu Luxembourg
● lv Latvia
● mt Malta
● nl Netherlands
● pl Poland
● pt Portugal
● ro Romania
● es Spain
● se Sweden
● si Slovenia
● sk Slovakia
● al Albania
● me Montenegro
● mk North Macedonia
● rs Serbia
● tr Turkey
● ch Switzerland
● is Iceland
● li Liechtenstein
● no Norway
● uk United Kingdom

Page 78

Project Report

years
(optional)

[Int] Default=None.
 4-digit year/s for which the target value is being requested. If
blank, all available years are returned.

pollutants
(optional)

[String] A list of pollutant-types to be returned. Options include:

● co: Carbon monoxide
● pm25 Particulate matter (droplets that are 2.5 microns or

less)
● pm10 Particulate matter 10 (droplets that are 10 microns

or less)
● nmvoc Non-methane volatile organic compounds
● no Nitrous oxide
● so Sulfur oxide

sectors
(optional)

[String] The following sector codes aggregate the emissions from the
group of emissions in their corresponding list

1. oil-gas-production:
○ Manufacture of solid fuels and other energy

industries
○ Fugitive emission from solid fuels: Coal mining and

handling
○ Fugitive emission from solid fuels: Solid fuel

transformation
○ Other fugitive emissions from solid fuels
○ Fugitive emissions oil: Refining / storage
○ Distribution of oil products
○ Other fugitive emissions from energy production

Cement production
○ Fugitive emissions from natural gas
○ Venting and flaring

2. mfg-combustion:
○ Stationary combustion in manufacturing industries

and construction: Iron and steel
○ Stationary combustion in manufacturing industries

and construction: Non-ferrous metals
○ Stationary combustion in manufacturing industries

and construction: Chemicals
○ Stationary combustion in manufacturing industries

and construction: Pulp
○ Stationary combustion in manufacturing industries

and construction: Food processing

Page 79

Project Report

○ Stationary combustion in manufacturing industries
and construction: Non-metallic minerals

○ Mobile Combustion in manufacturing industries
and construction

○ Stationary combustion in manufacturing industries
and construction: Other

3. aviation:
○ International aviation LTO (civil) Domestic aviation

LTO (civil)
○ International aviation cruise (civil)
○ Domestic aviation cruise (civil) International

maritime navigation
4. road-transport:

○ Road transport: Passenger cars Road transport:
Light duty vehicles

○ Road transport: Heavy duty vehicles and buses
○ Road transport: Mopeds & motorcycles
○ Road transport: Gasoline evaporation
○ Road transport: Automobile tyre and brake wear
○ Road transport: Automobile road abrasion

Railways
5. water-transport:

○ International inland waterways National navigation
(shipping)

6. other-transport:
○ Multilateral operations Transport (fuel used)

7. agriculture:
○ Agriculture/Forestry/Fishing: Stationary
○ Agriculture/Forestry/Fishing: Off-road vehicles and

other machinery
○ Agriculture/Forestry/Fishing: National fishing
○ Manure management - Dairy cattle
○ Manure management - Non-dairy cattle Manure

management - Sheep
○ Manure management - Swine Manure

management - Buffalo
○ Manure management - Goats Manure

management - Horses
○ Manure management - Mules and asses Manure

mangement - Laying hens
○ Manure mangement - Broilers Manure

mangement - Turkeys
○ Manure management - Other poultry Manure

Page 80

Project Report

management - Other animals
○ Inorganic N-fertilizers (includes also urea

application)
○ Animal manure applied to soils Sewage sludge

applied to soils
○ Other organic fertilisers applied to soils (including

compost)
○ Urine and dung deposited by grazing animals
○ Crop residues applied to soils Indirect emissions

from managed soils
○ Farm-level agricultural operations including storage

Off-farm storage
○ Cultivated crops Use of pesticides
○ Field burning of agricultural residues Agriculture

othe
8. chemical-mineral-production:

○ Ammonia production Nitric acid production Adipic
acid production

○ Carbide production Titanium dioxide production
Soda ash production

○ Chemical industry: Other Iron and steel production
○ Ferroalloys production Aluminium production

Magnesium production
○ Lead production Zinc production Copper

production
○ Nickel production Other metal production
○ Lime production Glass production
○ Quarrying and mining of minerals other than coal

9. residential:
○ Residential: Household and gardening (mobile)
○ Domestic solvent use including fungicides Road

paving with asphalt
○

10. waste-treatment:
○ Biological treatment of waste - Composting
○ Biological treatment of waste - Anaerobic digestion

at biogas facilities
○ Municipal waste incineration Industrial waste

incineration
○ Hazardous waste incineration Clinical waste

incineration
○ Sewage sludge incineration Cremation Other

waste incineration

Page 81

Project Report

○ Open burning of waste Domestic wastewater
handling

○ Industrial wastewater handling Other wastewater
handling

○ Other waste Other (included in national total for
entire territory)

○ Biological treatment of waste - Solid waste
disposal on land

11. construction:
○ Construction and demolition Storage Other mineral

products
○ Asphalt roofing Coating applications Degreasing

Dry cleaning
12. other:

○ Pipeline transport Other Commercial/institutional:
Stationary

○ Commercial/institutional: Mobile Residential:
Stationary

○ Other stationary (including military)
○ Chemical products Printing Other solvent use

Other product use
○ Pulp and paper industry Food and beverages

industry
○ Other industrial processes Wood processing

Production of POPs
○ Consumption of POPs and heavy metals (e.g.

electrical and scientific equipment)
○ National total for the entire territory (based on fuel

sold)
○ National total for compliance assessment (please

specify all details in the IIR)
○ Other not included in national total of the entire

territory
13. natural-emissions:

○ Volcanoes Forest fires Other natural emissions

Response values:

key type description

country String Country code will match the country codes from the request.

Page 82

Project Report

year String 4-digit value of the year of the target

pollutant String Pollutant codes will match the pollutant codes from the
request.

sector String The sector code will match the sector codes from the request.

emission-level Float The emission level for that particular pollutant in Gg (1000
tonnes)

{

 "de": {

 "2017": {

 "co": {

 "aviation" : 1.32,

 "construction" : 0.48

 },

 "pm25": {

 "aviation" : 0.44,

 "construction" : 0.43

 }

 }

 }

}

/aq_api/region_info
Provides a list of NUTS regions and associated information.

Page 83

Project Report

Example request:

For all regions:
http://localhost:8000/aq_api/region_info?version=v1

For a given level:
http://localhost:8000/aq_api/region_info?version=v1&

levels=1

Request parameters:

parameter type description

version String Default=None.
API version (e.g - ‘v1’). If blank, default to the current version.

levels
(optional)

[Int] The NUTS level to be returned:
● 0 = NUTS0 (countries)
● 1 = NUTS1
● 2 = NUTS2
● 3 = NUTS3

If not supplied or None, all levels are returned

Response values:

key type description

region String The region code of the NUTS region

level Int The NUTS level of the region

name String The name of the region

country String The country that the region is located in

Example response:

{

Page 84

http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025

Project Report

 0 :

 { "de", {

 "name" : “Germany”,

 "country_code" : “de”},

 { "it", {

 "name" : “Italy”,

 "country_code" : “it”},

 …

 }

 ,

 1 : [{} , {} ..],

}

/aq_api/region_boundaries
Provides a list bounding shapes for NUTS regions.

Example request:

For all regions:
http://localhost:8000/aq_api/region_boundaries?version=v1

For a set of regions
http://localhost:8000/aq_api/region_boundaries?version=v1&

regions=de,fr

Request parameters:

parameter type description

version String Default=None.
API version (e.g - ‘v1’). If blank, default to the current version.

Page 85

http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025
http://127.0.0.1:8000/aq_api/v1/1001025

Project Report

level
(optional)

Integer Optional. Nuts level. If None, all levels are returned.

regions
(optional)

[String]

Default=None.
List of codes for regions to include. If blank all regions are
included.

Options include

NUTS 0 (countries):

● at Austria
● cz Czech Republic
● de Germany
● dk Denmark
● ee Estonia
● fi Finland
● fr France
● el Greece
● hu Hungary
● hr Croatia
● ie Ireland
● it Italy
● lt Lithuania
● lu Luxembourg
● lv Latvia
● mt Malta
● nl Netherlands
● pl Poland
● pt Portugal
● ro Romania
● es Spain
● se Sweden
● si Slovenia
● sk Slovakia
● al Albania
● me Montenegro
● mk North Macedonia
● rs Serbia
● tr Turkey
● ch Switzerland
● is Iceland
● li Liechtenstein
● no Norway

Page 86

Project Report

● uk United Kingdom

Response values:

key type description

region String Region code will match the region code from the request.

level Int The NUTS level of the region

name String The name of the region

country_code String The country that the region is located in

geography String The region’s bounding shape in latitude and longitude pairs

Example response:

{

 0 :

 { "de", {

 "name" : “Germany”,

 "country_code" : “de”,

 "geography" : “POLYGON ((21.4789999999999992

45.1929999999999978, 21.3580000000000005 44.8220000000000027,

22.0120000000000005 44.6019999999999968, 22.0159999999999982

44.5989999999999966, 22.5000000000000000…………”},

 { "it", {

 "name" : “Italy”,

 "country_code" : “it”,

 "geography" : “POLYGON ((21.4789999999999992

45.1929999999999978, 21.3580000000000005 44.8220000000000027,

Page 87

Project Report

22.0120000000000005 44.6019999999999968, 22.0159999999999982

44.5989999999999966, 22.5000000000000000…………”},

 …

 }

 ,

 1 : [{} , {} ..],

}

Region-time API response

{

 "de" : {

 "2020-03-19" : {

 "o3" : {

 "annual-target" : .7,

"values" : [.5656,..,.5656]

"ytd-avg" : .5212,

 }

"co" : {

 "annual-target" : 12,

"values" : [14.564,..14.564]

"ytd-avg" : 12.12,

 }

}

 "2020-03-20" : {

 "o3" : {

 "annual-target" : .7,

"values" : [.4911,..,.4911]

"ytd-avg" : 50.005,

 }

Page 88

Project Report

"co" : {

 "annual-target" : 12,

"values" : [12.212,.., 12.212]

"ytd-avg" : 12.09,

 }

}

}

}

Page 89

Project Report

Appendix G - Tests and Code Coverage
We’re using the django test TestCase to run our unit tests and the django coverage plugin to
check our test coverage. These are the instructions on how to run the tests and generate the
test coverage report.

In order to run the tests, the application will need a local sqlite3 database.

Make a db.sqlite3 file:

1. In settings.py, comment out the main database settings
2. Un-comment the part to make sqlite3 the database
3. python manage.py makemigrations
4. python manage.py migrate
5. Now you can change the comments back in settings.py because there’s a setting in

settings.py that will automatically use the local sqlite3 database if “test” is in the
command

In the base eugreendeal directory, these will run the tests
> ./manage.py test airpollution.tests.eeamodeltests
> ./manage.py test airpollution.tests.eurostatmodeltests
> ./manage.py test airpollution.tests.nutsregions_tests
> ./manage.py test airpollution.tests.pollutants_tests
> ./manage.py test airpollution.tests.tests
> ./manage.py test airpollution.tests.observations_tests

We’re using the django coverage plugin to check our test coverage

Install the django coverage plugin using:

> pip install django_coverage_plugin

On the same directory level as eugreendeal

1. > mkdir eucoverage
2. > cd eucoverage

Run the tests using the -a flag (append)
> coverage run -a ../eugreendeal/manage.py test
airpollution.tests.eeamodeltests --keepdb

Page 90

Project Report

> coverage run -a ../eugreendeal/manage.py test
airpollution.tests.eurostatmodeltests --keepdb

> coverage run -a ../eugreendeal/manage.py test
airpollution.tests.observations_tests --keepdb

> coverage run -a ../eugreendeal/manage.py test
airpollution.tests.pollutants_tests --keepdb

> coverage run -a ../eugreendeal/manage.py test
airpollution.tests.nutsregions_tests --keepdb

> coverage run -a ../eugreendeal/manage.py test airpollution.tests.tests
--keepdb

View the coverage results on the screen. The major logic isn’t in the views so they are ignored.
> coverage report --include=../eugreendeal/* --omit */views/*

Make html files of the results
> coverage html --include=../eugreendeal/* --omit */views/*

If html files are made, you can see the report by opening the eucoverage/htmlcov/index.html file
in your browser

Page 91

Project Report

Page 92

Project Report

Appendix H - Application Documentation
The application uses the Sphinx document generator to create documentation. The documents
are included in with the code under eugreendeal/docs. When changes are made to the code
base, the documents can be regenerated using the following instructions:

> brew install sphinx-doc
> pip install sphinx_rtd_theme

On the same level as the eugreendeal directory
1. > mdkir eudocs
2. > cd eudocs
3. > sphinx-quickstart

Modify the conf.py as follows:

Path setup section
import os
import sys
sys.path.insert(0, os.path.abspath('.'))
sys.path.insert(0, os.path.join(os.path.abspath('.'), '../eugreendeal'))

os.environ['DJANGO_SETTINGS_MODULE'] = 'eugreendeal.settings'
import django
django.setup()

automodule error fix:
extensions = ['sphinx.ext.autodoc']

html_theme = 'alabaster'
html_theme = 'sphinx_rtd_theme'

Modify the index.rst file by adding a new line and modules below the toctree caption line.
It should look like this:

.. toctree::
 :maxdepth: 2
 :caption: Contents:

 modules

Page 93

Project Report

Make the rst files, ignoring the migrations
> sphinx-apidoc -o . ../eugreendeal ../airpollution/migrations/*.*

Generate the files by using the command:

> make html

View the document by opening the eudocs/docs/_build/html/index.html file in your browser.

Page 94

Project Report

Appendix I - Developers Manual

Index

Overview

Installation
Clone Repository
Install Dependencies

Python
Install pip
Pipenv
Psycopg2
SpatialIndex
Docker

Setup Local Database
Activate Environment
Activate the pipenv environment for the project. This will install all of the required packaged
from the specified within Pipfile.lock
Delete Existing Migrations
Setup Tables in Local Database
Create a Superuser
Create a Default Persona
Launch Application

Load Data

Run Docker Image (Optional)

Architecture / Extending Functionality
Architecture Overview
Extending Application
Data Model
Data Ingestion
Data Access (API)
Views

Page 95

Project Report

Overview
The EU Green Deal application described in this document is designed to collect data from a
variety of sources and present consolidated results in an easy-to-understand manner. Although
the data collected is scientific in nature, the application is intended for non-scientific users to
understand trends and patterns specifically in relation to environmental issues and more
specifically in relation to the EU Green Deal Project.

The EU Green Deal provides a roadmap for environment improvement through a roadmap of
actions is an EU initiative that sets a variety of targets that are aimed at becoming climate
neutral by 2050 by pursuing 4 main goals:

● Zero pollution
● Affordable secure energy
● Smarter transport
● High-Quality Food

The application described in this document is a prototype application that focused on the “Zero
Pollution” target by reporting air quality measurements and comparing them to targets set forth
in the Green Deal agreement.

The technical structure of the application is based on a Django Web Server (which is based on
Python). Data for the application is stored in a PostgreSQL database which can be hosted in a
local Docker container or any cloud service of your choice.

Knowledge of Django (and Python) is strongly recommended before attempting to extend the
application; however, the application can be downloaded and run locally without any knowledge
of Django.

Installation
The following steps describe the detailed steps necessary to install the application locally and
prepare it for extended development. If you run into problems during any of these steps and
simply want to run the prototype application, you can run the entire application as a Docker
container locally. See Run Docker Image (Optional) for details.

IMPORTANT NOTE: This application was developed on a Mac OS platform and has been
tested to work on a Mac and should also work on Linux. Installation on Windows may require
special handling of the GeoPandas installation. Please refer to the documentation for

Page 96

Project Report

GeoPandas installation on WIndows if you run into a problem installing the dependencies using
Windows. Using the Docker instance of the application should be possible to run on any
platform that supports Docker. To do this, follow the instructions under Run Docker Image
(Optional).

Clone Repository
Access to the repository is restricted and not public. If you do not have an account
which can access the application, please request access via email to
mcdomx@gmail.com. Please include a desired user ID for the account that will be
created for you. Once you have an account established, you can clone the repository
using:

> git clone
https://bitbucket.org/capstoneeureporting/eugreendeal/src/master/

Install Dependencies

Python
The application requires Python 3.7. Please refer to the Python installation
documentation if you do not have 3.7 installed locally. To check your Python
version:

> python --version

Any 3.7 version will work.

Install pip
You’re welcome to install required packages using other installers, but we
recommend using pip. Instructions to install pip can be found here.

Pipenv
The application uses pipenv to manage dependencies. To use pipenv, you will
first need to install the python module:

Page 97

mailto:xxx@gmail.com
https://pip.pypa.io/en/stable/installing/

Project Report

> pip install pipenv

Psycopg2
Check to make sure you have the PostgreSQL adapter installed:

> pip freeze | grep psycopg2

If it isn’t installed already you can install it using one of these commands:

> pipenv install psycogp2-binary

ALTERNATIVE: If you have issues installing via pipenv, you can install with:

> brew install postgresql

SpatialIndex
SpatialIndex is a library used to calculate data that is rendered in some of the
visualizations in the prototype application.

> brew install spatialindex

Docker
The initial setup will be done using a Docker database. This requires docker to
be installed locally. Instructions for installing Docker can be found at
https://docs.docker.com/get-docker/.

Setup Local Database
The application database can be installed using a local Docker Postgres container.

Navigate to the application ‘../eugreendeal/infrastructure’ directory:

> docker-compose up -d db

The first time this is run, the proper container will be downloaded. This may take several
minutes.

Page 98

https://docs.docker.com/get-docker/

Project Report

Activate Environment

Activate the pipenv environment for the project. This will install all of the required
packaged from the specified within Pipfile.lock

From the ‘../eugreendeal/ directory’:

> pipenv install

When prompted, enter the following to activate the virtual environment:

> pipenv shell

Delete Existing Migrations
Delete all the Django migrations from airpollution/migrations. Leave the __init__.py file in
place. The migrations are located in the ‘..eugreendeal/airpollution/migrations’ directory.

Setup Tables in Local Database
Once the Docker database container is up and running, the application’s data tables can
be created:

From the ../eugreendeal/ directory:

> python manage.py makemigrations
> python manage.py migrate

Create a Superuser
As a superuser, you have the ability to navigate to table views in order to see the data
stored in the application.

From the ../eugreendeal/ directory:

> python manage.py createsuperuser

Follow the prompts to set up a username and password.

Page 99

Project Report

Create a Default Persona
The application needs a default persona for a non superuser to be assigned a persona.
To do this, we need to create a default persona if this is the first time the application is

being initialized.
From the ../eugreendeal/ directory:

> python manage.py createdefaultpersona

Launch Application
At this point, you can launch the application to see that it is functioning properly.

From the ../eugreendeal/ directory:

> python manage.py runserver

Navigate to the site at:
http://localhost:8000/

To see the Django administrative console, navigate to:
http://localhost:8000/superadmin/

IMPORTANT NOTE: At this point, you have not populated the database with any data
so you’ll get a number of errors if you try to load in plots. Please follow the instructions to
load in data below:

Load Data
The application relies on a large amount of data to provide meaningful analysis and reports. For
testing, a limited set of data can be loaded.

First, shut down the application using (Ctrl + C). Then run the following command

> python manage.py populate_db

IMPORTANT NOTE: this process can still take a few hours to complete. Please be patient.

Page 100

http://localhost:8000/
http://localhost:8000/

Project Report

Run Docker Image (Optional)
If you face any compatibility issues while installing any dependency or due to some reason you
are unable to bring up the Django server, you can opt to build a local container and run it as a
docker image along with the docker postgres instance. To do that, navigate to the project home
directory and execute:

> docker build -t eugdserver .

Once the build is complete, you can bring up the entire infrastructure by navigating into
../eugreendeal/infrastructure directory and executing:

> docker-compose up -d

To bring stop the docker instance:

> docker-compose down

Architecture / Extending Functionality
The application is based on a Django Web Server which is python dependent. The application
allows for the extension of new data sources and visualizations. Knowledge of Django is highly
recommended and knowledge of Python is essential to extend the application.

Page 101

Project Report

Architecture Overview
The application follows a traditional MVC design approach.

Extending Application
Extending the application requires new components to be built which include:

● Creating DB tables for new data
● Collecting and loading external data
● Creating accessor functions to access the table data
● Creating API functions to consolidate data for front-end use
● Creating visualizations
● Placing the visualizations on web pages

If new data is not necessary, then only new visualizations must be created and you can start at
the Data Access (API) or Views section of this document. Data for your new visualization may
be readily accessible via existing API functions, so you may not need to create any functions to
access data specific to your visualization. It is advisable to start with the Views section and go
back and add API functions as you find that they are necessary to build your visualization.

Page 102

Project Report

A summary of the extendable classes are listed in the table below:

Django uses a predefined directory structure to store files of types. Subdirectories under each
directory can be created, but files of similar types must be kept under the ‘model’, ‘views’ and
‘templates’ directories. This is important as Django will look for files under certain directories to
perform application management tasks.

Page 103

Project Report

A list of the directories used is presented below:

Data Model
If a new presentation of data requires new data to be externally collected, a new data model
must be created. This will likely require some knowledge of how Django’s ORM works, but you
can follow the templates created in the prototype application to cover most cases.

Step 1:
Create a new model class python file in the ‘../eugreendeal/airpollution/models’
directory.

Step 2:
In that file, create your new class inheriting from the Django models.Model class.
(use examples from the base application as a template.)

For each field that will be used in the application, create a variable from the
models class.

Step 3:

Page 104

Project Report

In the new class, create data accessor functions which the API will use to get
data from the new model. These functions should specialize in collecting
summarized data efficiently from the model. No accessor functions should
access other models. Functions that combine data are in the API layer described
later (see Data Access).

Data Ingestion
After a model is created, the logic for collecting external data can be started. The design of this
task will vary depending on what datasource you will use and how that data is accessed. Of the
steps necessary to extend the application, creating a process to load external data is likely to
require the most time, effort and skill.

A new class is required to handle the data collection task. This new class must inherit from the
DataSource class which can be found in the ‘../eugreendeal/dataingestor/’ directory. The
DataSource class is specific to this application and not a Django class. The DataSource class
only requires a load_data() and a load_dummy_data() function to be implemented but you
can, and should, create others to build the process.

These functions are expected to execute the process for collecting external data and saving it
into the application database. The load_data() function can accept a ‘kwargs’ dictionary
argument allowing flexibility for accepted arguments. These arguments will likely be necessary
to set parameters for restricting the data load to a specific date or for only certain elements.

Since the variety of datasources is extremely large, no specific instructions are included but a
variety of working examples are provided with the prototype application.

Data Access (API)
In this section, we review the API layer and its purpose.

Access to each data source’s table data is created in the model (see Data Model). Those
functions are basic data accessors and provide a benefit by making fast data queries without
requiring the API to know the detailed model structure.

The API layer provides intelligence for the application. Here, data may be combined from
several calls to one of many data model accessors and organized for concise presentation to

Page 105

Project Report

the front end. Functions in the API layer will be called by views, each of which are designed to
serve a specific visualization (see Views). The flow of data requests is simplified below:

Front-end HTML → my_view → the_application_API → my_model(s)

The prototype application includes an API script in the ‘views’ directory called ‘aq_api_v1.py’.
Existing functions can be re-used or additional functions can be added. You may also create a
new api.py file to organize your work more effectively.

Creating an API function is dependent on the tasks necessary and follows no specific formatting
requirements in the application. The main purpose of the API layer is to prevent any views from
needing direct access to the data model objects as well as preventing any views from needing
to combine data from various functions. The primary guideline to follow is that API functions
should use model accessor functions to make calls to the database. Generally, the API should
not include functions that directly call a database table.

Views
If the application already has the data you need, you may be able to start at this step for
extending the application. If you find that you need a new API function during this step, new API
functions should be created (see Data Access).

Views are a Django term and refer to Python scripts that collect data and render a web page or
a component of a web page with that data. For the purposes of extending this application, each
new view should represent a new visualization and should collect the data necessary for the
visualization.

Step 1:
Create a new views_<name of view>.py file in the ‘views’ directory. The contents
of this file should be a named function that will be called to render your
visualization. The function should return accept a single argument of ‘request’
and return a ‘render’ object.

def my_visualization_view(request):

..logic and code
return render(request, ‘airpollution/my_vis.html’, dict(data1=’my_data’, data2=’more_data’))

Page 106

Project Report

This will render the page passing the dictionary of data into the page which can
be accessed using jinja templating.

Alternatively, you can return a JSON object if your page uses javascript to render
the page.

def my_visualization_view(request):

..logic and code
return JsonResponse(dict(data1=’somedata’, data2=’moredata’))

Step 2:

Create a new HTML file that will host your visualization. Copy the
‘visualization_template.HTML’ file as a starting point.
This new file should only include the javascript and HTML tags specific for the
visualization you are creating. This new HTML file inherits from the site’s layout
and navigation design.

Step 3:

Create a route to your visualization.
During development, you may want to see your progress. To create a route to
your visualization without rendering an entire dashboard page, you can create a
route in the ‘eugreendeal/airpollution/urls.py’ file by adding a route to the
‘urlpatterns’ list. Follow the logic presented in the template. Your added item
should follow the pattern below:

path("my_route_name", views.my_visualization_view, name="my_visualization_name"),

You will be able to reach your page at:
http://localhost:8080/my_route_name

Later, this route will be used to place your visualization into an existing
dashboard.

Step 4:

Once the visualization is completed, it can be integrated into a dashboard page.
Select the dashboard page to include the visualization into and find the location
for your page based on the dashboard layout. Insert the call to your page’s route
where applicable.

Page 107

http://localhost:8080/my_route_name

Project Report

New visualizations are quite simple to insert into HTML. First add a div with a
unique id to reference. This is where your visualization will be placed. For
example;

<div id="reg-rep-ch-1"> </div>,

The div is populated using a JavaScript function in the dashboard page. The
following update() function is called in the dashboard page when the page is first
loaded and when the page’s selections are changed. The function performs the
following:

● Selects the specified div in the page
● Initially places a a preloader gif image in that div
● If it receives a successful JSON response from the API, then it populates

the div with the Bokeh plot embedded within the JSON response. Note
that the API function in the example below is called from the route
pollution_over_time . This route must be included in the urls.py urlpatterns
list.

● If the JSON response throws an error, it places an error image within that
div

function update(country) {

 var chart_div = document.querySelector('#reg-rep-ch-1');

 chart_div.innerHTML = "<img style=\"height:300px;width:400px\" src={% static

'airpollution/assets/img/gif/pre-loader-2.gif' %}>";

fetch('/pollution_over_time?pollutant=PM10&start_date=2020-02-29&end_date=2020-03-01&c

ountries=' + country)

 {#pollutant=PM25&start_date=2020-01-01&end_date=2020-03-22#}

 .then(function (response) {

 return response.json();

 })

 .then(function (item) {

 var chart_div = document.querySelector('#reg-rep-ch-1');

 chart_div.innerHTML = "";

 Bokeh.embed.embed_item(item, 'reg-rep-ch-1');

 chart_div.setAttribute('data-url',

'/pollution_over_time?pollutant=PM25&start_date=2020-01-01&end_date=2020-03-22');

 }).catch((error) => {

Page 108

Project Report

 var chart_div = document.querySelector('#reg-rep-ch-1');

 chart_div.innerHTML = "";

 chart_div.innerHTML = "<img style=\"height:200px;width:400px\" src={% static

'airpollution/assets/img/tech-snag.png' %}>";

 });

}

Once implemented, the above steps should yield your visualization presented in the browser
window when navigating to the chosen route.

Page 109

